Pro RESTful APIs
with Micronaut

Build Java-Based Microservices with
ST JSON, and XML

Third Edition

Sanjay Patni

APICSS®

Pro RESTful APIs with
Micronaut

Build Java-Based Microservices
with REST, JSON, and XML

Third Edition

Sanjay Patni

Apress’

Pro RESTful APIs with Micronaut: Build Java-Based Microservices with
REST, JSON, and XML, Third Edition

Sanjay Patni
Milpitas, CA, USA

ISBN-13 (pbk): 979-8-8688-1242-2 ISBN-13 (electronic): 979-8-8688-1243-9
htips://doi.org/10.1007/979-8-8688-1243-9

Copyright © 2025 by Sanjay Patni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LL.C: Welmoed Spahr
Acquisitions Editor: Melissa Dufty

Development Editor: Laura Berendson

Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar
Cover image designed by FlyD on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Twould like to thank everyone at Apress who I have
worked closely with. Thanks to the reviewers, their in-depth
reviews helped the quality of the book. A heartfelt thanks
goes to my wife, Veena, for her tireless and unconditional
support that helped me work on this book. A huge thanks
goes to my father, Ajit Kumar Patni, and my mother,
late Basantidevi, for their selfless support that helped
me reach where I am today.

Table of Contents

About the Author xiii
About the Technical Reviewer XV
Introduction..........cccnieenanee xvii
Chapter 1: Fundamentals of RESTful APls...........ccccrnienmnnsssssnsssssssnnnanas 1
SOAP VS, RESTevivceieeasessssssssss s ssasssasasssssnsssssssssssssessssssssesssssesssnsnsnes 4
Web Architectural Style.........covoceireeerieseseses s essssssss s nsse s sasanenes 6
T TS PR vt v VRV R STV 7
Unifarm Resolrce IMtarace.. . masmussmmunsaananarmssmsas ¥
Layered SYSTEMI.........ccceceereeeeccsesenes e e esnsasss e sesnese s s e assesananaeas 7
GV st nasm s s s e A G e 8

e L O R st B R T A S A T S G A 8
Code-0n-DemaNnccorueeeineeeeesnrerere e sssasss e ne e s e senanneas 8
HBTEORS osmamnnis s e i e v 9
WHER IS BESTT iy i o ot i vl s s e 10

B ES T B oo rorsrammomn e et ame i R S B TS ST VS0 11
REST FUNAAMENTALSccoereriereereninneacesesessssssseesnssssesssesesasssssssassssnsessensans 12
SUMMANY....cvieereeieresessns e n et sasas s sssn e s s sn e e s mess s s asasssnsenenr s s ensasassnsansnes 14
Chapter 2: Micronaut........ccccuisssanisssssssnsssssssasssssssssnasssssssssssessnsnssssssanns 15
Comparison of Micronaut with Spring Bootcoececinieninccnniseecesesenns 16
Ease of InStallationccceveeemrininsecseseses s se e esnenens 16
Nitvaly Eloud Enabld.cuamnnanammmmmsiisammssosnssenvssiss 17

TABLE OF CONTENTS

Serverless FUNCHONS ..o cessssesssssssssssssssssssssssssssssens 11
Applicationr Corfguraion wummmmanimvasmmsnmmmassIT 18
Mezsaning System: SUPPOTL. . uanunsarmmmammmrmsrssssnmsssmss 19
SECUTY weveeererrrrrceresesesssssssssassssssee e e seassssassssssnsnsnssnsnsassssssassssnssnsnssanens 20
VIR oo s i e B s B e A 21
Management and Monfomng «uasunsarmsmsmmmmmsrssssaimsssms 21
AP Bortolln s mmmmmrasemammmmmmsmmeammsarmaessosrsmeanrssobl
ONNNE FIGAL ..t ne 22
IVVERBERAIO i sy i e B B i 23
O AR s o imimms s s sy sk s s s asins 24
L5 U 24
POBTIVAN o onsuinsnsimnins tsassissasssss st s senisudiat s voaiien 25
| 1| ORISR SRRSO S S SN ST COME RN IR 26
TNt i s A i B 27

Chapter 3: Introduction: XML and JSONcccccemnnsnnnmsssssnssnssssssnssans 29
WHAL IS XIML? ... ceeasssasssnsssssess s e e sesesearesesssssssssssssnsssssnssssssassnsnassnsns 20
XNIL: EoriMBIES oo s v e R R TS 31

Why Iz XML Imporiam? s saumsmmnnmmsmanmarmsosnmmmsmsoasimssmmmm 32

How Can You Use XML?.........coeereerereeennesessessssssssnseesessssssssssssasssssessssensans 33

Pros and Cons bf XML s sadsasis s 33
WHEE B JSONT < mm masm s e B s e oeees 34
SN, SVIRER ccovrmmmmmrmemms s s s e R SRR 35

Why Is JSON IMpOrtant?.........ccceueeeeersesessssssssneresessessssssssssssssssssessssssessssssaens 37

Hoiw Can You Use JSONT ... st i 38

TABLE OF CONTENTS

Pros and Cons of JSON..........ccccoiicrccccce s 38
XML and - JSUN Companisoi. . crmmsmnnrasismisiaamiadaiimi 39
Implementing APlIs to Return XML and JSON Messages.........c.cccerrseneeueuessarennnns 41
o T YGRS SN TV VTS 45
Chapter 4: APl Design and Modelingccccummsmnmsmamssssssnssssssnssssssssanns 47
APl Dosign SEategiBe, s i s i 47
APl Creation Process and Methodologyccsmummnmnnssmsi s 49
PROBESS s e T S S TR e O
APl Methodology.......cceeeeereersrrneresensensssssssssssssseesssssssnsssssssssssssssssessssssensans a0
Domain Analysis or APl Description c.....ccuummnmnmmmismsasais a1
RIS D eI e e o s ST 92

PrOTOLYPING ..evceeecreeeeeccnesess et sne s sass s n s ns s s s s ssssannssnsenanenes OO
Iplementalion sonasmnmumsis T R a3

APL MOGEING.....ceerieeeueuccsenaesssssnssnstsse s sssassssssssesessssessns s saasssssssssssssssasensass o4
Comparison of AP Bodalingcsscammmussusssumnaanirasmamnm 96
IV SRR e e I I VTSIV o7
B T ccsswsmmsc sty L A A3 P T 28
Keep Your Base URL Simple and Intuitive..........coccoceeeecicnecennsenccnnscsnenenas 28
I SUTOMREY oo s e T o B i 99
Effir HaNg conenmmmsanimmmmsmni e i i e T 60
oo B T T 61
VEISIONING.....vieereerrreeueaesssssssssssseeressssessssssassssssssssessssessnsasssssssssssssssssnssanensans 62
Partial ReBDONSacnmmanimmmmsmn e i i i e 63
(1551 SR 64
Multiple FOMMALSc.cceeeeeeeeerneceresssssesssesssssssssessesssssnssssasasssssesssssssenensans 64
P FABAI o soivissniainssam sy i s i 65

TABLE OF CONTENTS

API Solution ArchiteCIUIEccuvveeeeererereenesesssesassssssse e sne e sssaasssssssse e ssensnssssens
Mohbile SoliliiE . TN
Glout Solling . cammenoanmmanmnsrmemmmmm s e
Web SOIULIONS........ccceeeeesrrce e sesas s ens s s s ssns e enenesssens
Integration SoIMIONS ... i s aadvasiim
Multichannel Solutions ...ceswummaunsarmamsmmsmmmsnrssnasmssm
SMAM TV SOIUTIONS ... e sses s sss s ne s sasasssssensensanans
Intarmiol of TRINOE .o s s

Stakeholdars i AP SOIUEONS s i i
AR PO O corcr e e s o o o s S B T B K
APl CONSUIMETSvoeerneesesssssererssessesesssssssssssssssessessessssassssssssssssssssssanessssssns
Eit] LISaE i s s S Sy e S s

AP] MOaliNG s snmsoeimmssss s saiivesiiin sadissn i
LI SOARY [SSEYRIRN] coesssncnssonm scees smceiom sy o 0 e s A R S S S

11T g ST

Chapter 5: Introduction to JAX-RScccccininneninmminnsnmssssasisssssnnnan 77

JAX-RS [itiodustion s s
Input snd Quipin-Contan WP oo mmmrasssanmmsss s
AR TS T NN s oo s o s T R A S S
Cat P AVEITRERER cxuxcaorrnmomsn oo srmscros e e S AN TG CEES
Quiery Parameter .. comummemmaussmmnnursensmrarmmsmmasnsssmaere
CouKID ParaMIBIEY .o o sy s S aasse
Header PAarametercoccceinieccesenennssssse s sassssssssss e sssssssssssssssssnens
FOrm PAr@ametercoieeeeeninieecesesessssssse s sassssssssss e sssnsssssansssssnens
MALFIX PAramELerc.cuiuieeeeerireeeeiccsesessssssse s e sasssasss s sasssssssssns e s sssnsssssssssssssnens
Micronaut Implementation of JAX-RS.........coreeceseeserssese et ssessnsenens
Supported ANNOTALIONS.......ccocrirreueuccseeeses e ssesess s sasas s s s sn s s s esasnsenens

TABLE OF CONTENTS

Injectable Parameter TYPES........coeeerrereseesssssnrcresessssssssssasssssssssesessssssssssssssssnes 85
SecurityContaxt and Micronaut SecUnly....... i 86

o T YRR, oo s ey i e T e T e 86
Chapter 6: API Portfolio and Framework.. - 87
AP Portfolio ArChItECIUNE ...t 87

P OO TN BV i it s i s e i an s 87

TS SRR cevsconcmmomiun s s esmo s e s T S A N LTS 88

30T USROS . |

S ORI st s e T 88

L SR R coxscxmresmmrmam e s o S s B TR P YA 89
LONQEVITY ..eveeeeeicieenessssinessesss s s s sss s s s s s s s s ssss s s sensssssssssnsnes 89
How Do We Enforce These Requirements—Governance?cccceereeueuenes 89
CONSISFTEIIEN onsiummmim s T s R A VIV BTV VYT 89
RBUSE....ceee i 90
CUSTOMIZALION.......ceeeece s 90
DigCovaraninty conummmanmnmsmnn R TSI 90
Change Managemant ...ousumaammmamansnumammsmrsammossris 90
API FrameWOrK........oucueirurereesscss s ssssasssssssssnsnns 91
Process APIS: SErVICES LAYETcceuecreseeessrsrsnseesesssssassssssssssssssssnssnssensasans 93
Syatem APls: Data Accass Dbject ...nnnnunnmianmsiismirsaimms 93
Exparience APIs; APl Fagate,...consnmumsummrsamssmssamss 93
Services Layer Implementation............ccuoeeeeerenesnecsesesessssnsnsesssseessssssssssssenes 94
SUMMAY....ceceirireenesesessessssssee e sness s s s sssssssess e s ensss s e e ssssansessanasasessssnsnarsnes 101
Chapter 7: API Platform and Data Handlerccccismnnnmnsnssnnnsssssnanns 103
API Platform ArchiteCture ... sasasisnsasnenns 103
Why Do We Need an API Platform?c.oveeececnimmessnesesssssesece e essnsenes 104
So What Is an API Platform?..........ccccccccccccssesesissseseee s 104

TABLE OF CONTENTS

So Which Capabilities Does the APl Platform Have?............ccoeveeeeecsicsennrenens 105
AR[Dovelapment PLatoim wssessmmin i s v 105
AP| Rinhime Plationmiasusosmsiisenstiis i s s 107
AF[Engagement PRt casenamsmmnis o mss i v 107

How Is an API Platform Organized? What Is the Architecture of the
L o {0 1 1 O 108

How Does the API Architecture Fit in the Surrounding Technical
Architetirs ol af EmeinEn Y s ansamaummmrmssam s 110

e Nl s
Data Accass DbIBet . cunmnuseausmrmmmmurmsmamms s o 112
Command Query Responsibility Segregation (CORS)..........ccooureieermerereerenenens 113
SQL Development ProCess ... ssssssssssssssassens 113
NOSQOL PrOCESS. ...cciiicicriisicsssssssissssssss s assns 114
Do | Have to Choose Between SQL and NoSQL?ccoiincncsnccsucucacinacanans 114
Why @ Single BEST API? ...t reeeseeecscesmcssssasasesesens e s sssssesensensans 115
SUMMAIY...c it esrsrserere st sne s sssss st sssesesnsassesssssnsssssssnsessssssensasssssssssssens | OO

Chapter 8: APl Management and CORS .135
FAGAMR ...t nn s snnnnns | OO
Fagade Pattern.........cccueeeimninieccsesesssssess s sas s asasssens 135
APIFAGAELcoeeeceereerncace e assssssnse e sesesnensssssasassssssssessssssensasssssssssssssnsesssessans 1.0
API MAN@gemEeNt.......cccueeeeeeeerrnsereresessesesssssssssssssssssessessssasssssssssssnssssssasensassens 139
API Life CYCIR -.eeeeeeeereceecacenerenssaeeecacaseresessssassssasssncssssasssssssssscssssasssessasensace 140
API Retirement ... cssssssssssssssssssssssssssssasssesass 141
APl MoNetizationccoccecucurueenenesesesesesnsesesesesesesesscssssssssssssssssssssssssssasasasesass 142

TABLE OF CONTENTS

Chapter 9: API Security - 145
API Security—0AULh 2. e ene s s saasssanssnsanas 145
ROIES ...t neas s sn s sesa s ssssse s sesnenssssssnsassssssnssassaseneasseses 140
TOKENSeveeceeacesessssserereresessess s ssasasssssse e ssnsssas s as s s sansenesennenenesnsssasasssensnnennas 146
Register as @ Client.........cccoeeeeeeeieeecsiesessssscs s sssssa e s snesssssesssanenes 148
CIianE RegiStation s s s e s i i s 148
Aulhotization Servar RESpoNSe.amusmmins i b e s s 149
Aithotization GEait Y68 s s b e s e 149
Alithorization Code BranT .. wssinsnmsmiisiin s s o 149
When Shoulld it Ba UBad?. ..cuummimmmmismummn s s 149
IR E AT PO s v s e i AT 151
When Should It Be Lsad?. .xnammmmmmnammmmmmaainssmassmmnssareims 151
Resource Owner Password Credentials Grantcccccooenrincrsnrsnenesscsscnnnns 153
Whian: Shrmld i Bellesd ... oo cumauanmnmasam e e 154
Gl e Rl S G s o S T S 155
APl Sacirity—JSON Web Token...csuunurmmmsmmssassunsasnrsss 157

11117 OO TPIOO, | '

About the Author

Sanjay Patni is a results-focused technologist
with extensive experience in aligning
innovative technology solutions with business
needs to optimize manual steps in the
business processes and improving operational
efficiency.

At Oracle, he has worked with the Fusion
Apps Product development team, where he

has identified opportunities for automation

of programs related to Fusion Apps codeline
management. This involved delivery of GA releases for patching, as well as
codelines for ongoing demo, development, and testing. He conceptualized
and developed self-service UX for codeline requests and auditing,
reducing manual steps by 80%. He also rolled out 12 sprints of codeline
creation, automating about 100+ manual steps involving integration

with other subsystems using technologies like automation workflow and
RESTful APIs.

Prior to joining Oracle, he spent 15+ years in the software industry,
defining and delivering key initiatives across different industry sectors.
His responsibilities included innovation, requirement, analysis, technical
architecture, design, and agile software development of web-based
enterprise products and solutions. He pioneered innovative usage of
Java in building business applications and received an award from Sun
Microsystems. This helped improve feedback for Java APIs for Enterprise
in building business application software using Java. He has diverse
experience in application architecture including UX, distributed systems,
and cloud.

ABOUT THE AUTHOR

He has worked as a visiting technical instructor or mentor and
conducted classes or training on RESTful API design and integration.

He has a strong educational background in computer science with
a master’s from IIT, Roorkee, India and bachelor’s in Electronics from
SGSITS, Indore, India.

Xiv

About the Technical Reviewer

Massimo Nardone has more than 26 years

of experience in security, web/mobile
development, and cloud and IT architecture.
His true IT passions are security and Android.
He has been programming and teaching how
to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than

25 years. He holds a Master of Science degree
in Computing Science from the University

of Salerno, Italy. He has worked as a chief
information security officer (CISO), software

engineer, chief security architect, security
executive, and OT/IoT/IloT security leader and
architect for many years.

Introduction

Databases, websites, and business applications need to exchange data.
This is accomplished by defining standard data formats such as Extensible
Markup Language (XML) or JavaScript Object Notation (JSON), as

well as transfer protocols or web services such as the Simple Object
Access Protocol (SOAP) or the more popular Representational State
Transfer (REST). Developers often have to design their own Application
Programming Interfaces (APIs) to make applications work while
integrating specific business logic around operating systems or servers.
This book introduces these concepts with a focus on RESTful APIs.

This book introduces the data exchange mechanism and common data
formats. For web exchange, you will learn the HTTP protocol, including
how to use XML. This book compares SOAP and REST and then covers
the concepts of stateless transfer. It introduces software API design and
best design practices. The second half of the book focuses on RESTful API
design and implementations that follow the Micronaut and Java API for
RESTful web services. You will learn how to build and consume Micronaut
services using JSON and XML and integrate RESTful APIs with different
data sources like relational databases and NoSQL databases through
hands-on exercises. You will apply these best practices to complete a
design review of publicly available APIs with a small-scale software system
in order to design and implement RESTful APIs.

This book is intended for software developers who use data in projects.
It is also useful for data professionals who need to understand the methods
of data exchange and how to interact with business applications. Java
programming experience is required for the exercises.

INTRODUCTION

Topics covered in this book include
Data exchange and web services
SOAP vs. REST, state vs. stateless
XML vs. JSON
Introduction to API design: REST and Micronaut
API design practices
Designing RESTful APIs
Building RESTful APIs
Interacting with RDBMS (MySQL)

Consuming RESTful APIs (i.e., JSON and XML)

CHAPTER 1

Fundamentals
of RESTful APIs

APIs are not new. They've served as interfaces that enable applications

to communicate with each other for decades. But the role of APIs has
changed dramatically in the last few years. Innovative companies

have discovered that APIs can be used as an interface to the business,
allowing them to monetize digital assets, extend their value proposition
with partner-delivered capabilities, and connect to customers across
channels and devices. When you create an API, you are allowing others
within or outside of your organization to make use of your service or
product to create new applications, attract customers, or expand their
business. Internal APIs enhance the productivity of development teams
by maximizing reusability and enforcing consistency in new applications.
Public APIs can add value to your business by allowing third-party
developers to enhance your services or bring their customers to you. As
developers find new applications for your services and data, a network
effect occurs, delivering significant bottom-line business impact. For
example, Expedia opened up their travel booking services to partners
through an API to launch the Expedia Affiliate Network, building a new
revenue stream that now contributes $2B in annual revenue. Salesforce
released APIs to enable partners to extend the capabilities of their platform
and now generates half of their annual revenue through those APIs, which
could be SOAP-based (JAX-WS) and, more recently, RESTful (JAX-RS),
Spring Boot, and now Micronaut.

© Sanjay Patni 2025
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_1

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

SOAP web service depends upon a number of technologies (such as
UDDI, WSDL, SOAP, and HTTP) and protocols to transport and transform
data between a service provider and the consumer and can be created
with JAX-WS.

Later, Roy Fielding (in the year 2000) presented his doctoral
dissertation, “Architectural Styles and the Design of Network-based
Software Architecture.” He coined the term “REST,” an architectural
style for distributed hypermedia systems. Put simply, REST (short for
Representational State Transfer) is an architectural style defined to help
create and organize distributed systems. The key word from that definition
should be “style,” because an important aspect of REST (and which is one
of the main reasons books like this one exist) is that it is an architectural
style—not a guideline, not a standard, or anything that would imply that
there are a set of hard rules to follow in order to end up having a RESTful
architecture.

In this chapter, I'll be covering REST fundamentals, SOAP vs. REST, and
web architectural style to provide a solid foundation and better prepare
you for what you'll see in later chapters.

The main idea behind REST is that a distributed system, organized
RESTfully, will improve in the following areas:

« Performance: The communication style proposed by
REST is meant to be efficient and simple, allowing a
performance boost on systems that adopt it.

« Scalability of component interaction: Any distributed
system should be able to handle this aspect well
enough, and the simple interaction proposed by REST
greatly allows for this.

« Simplicity of interface: A simple interface allows for
simpler interactions between systems, which in turn
can grant benefits like the ones previously mentioned.

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

Modifiability of components: The distributed nature
of the system, and the separation of concerns proposed
by REST (more on this in a bit), allows for components
to be modified independently of each other at a
minimum cost and risk.

Portability: REST is technology- and language-agnostic,
meaning that it can be implemented and consumed by
any type of technology (there are some constraints that I'll
go over in a bit, but no specific technology is enforced).

Reliability: The stateless constraint proposed by REST
(more on this later) allows for the easier recovery of a
system after failure.

Visibility: Again, the stateless constraint proposed has
the added full state of said request (this will become clear
once I talk about the constraints in a bit). From this list,
some direct benefits can be exirapolated. A component-
centric design allows you to make systems that are very
fault-tolerant. Having the failure of one component not
affecting the entire stability of the system is a great benefit
for any system. Interconnecting components is quite easy,
minimizing the risks when adding new features or scaling
up or down. A system designed with REST in mind will

be accessible to a wider audience, thanks to its portability
(as described earlier). With a generic interface, the system
can be used by a wider range of developers. In order to
achieve these properties and benefits, a set of constraints
were added to REST to help define a uniform connector
interface. REST is not suggested to be used when you
need to enforce a strict contract between the client and
server and when performing transactions that involve
multiple calls.

CHAPTER 1

FUNDAMENTALS OF RESTFUL APIS

SOAP vs. REST

Table 1-1 provides a comparison between SOAP and REST with an

example of use cases each can support.

Table 1-1. SOAP vs. REST comparison

Topic SOAP REST

Origin SOAP (Simple Object Access REST (Representational State
Protocol) was created in 1998 by Transfer) was created in 2000
Dave Winer et al. in collaboration by Roy Fielding at UC, Irvine.
with Microsoft. Developed by a large Developed in an academic
software company, this protocol environment, this protocol
addresses the goal of addressing ~ embraces the philosophy of the
the needs of the enterprise market Open Web

Basic Makes data available as services ~ Makes data available as resources

concept (verb + noun), for example, (nouns), for example, “user” or
“getUser” or “Paylnvoice” “invoice”

Pros Follows a formal enterprise Follows the philosophy of the

approach

Works on top of any communication
protocol, even asynchronously
Information about objects is
communicated to clients

Security and authorization are part
of the protocol

Can be fully described using WSDL

Open Web

Relatively easy to implement and
maintain

Clearly separates client and server
implementations

Communication isn't controlled by
a single entity

Information can be stored by the
client to prevent multiple calls
Can return data in multiple
formats (JSON, XML, etc.)

(continued)

CHAPTER 1

Table 1-1. (continued)

FUNDAMENTALS OF RESTFUL APIS

Topic SOAP REST
Cons Spends a lot of bandwidth Only works on top of the HTTP
communicating metadata protocol
Hard to implement and is unpopular Hard to enforce authorization and
among Web and mobile developers security on top of it
Whento When clients need to have access ~ When clients and servers operate
use to objects available on servers on a web environment
When you want to enforce a formal When information about objects
contract between the client and doesn't need to be communicated
server to the client
When not When you want the majority of When you need to enforce a strict
to use developers to easily use your AP contract between the client and
When your bandwidth is very limited server
When performing transactions
that involve multiple calls
Use cases Financial services Social media services
Payment gateways Social networks
Telecommunication services Web chat services
Mobile services
Examples https://www.salesforce. https://dev.twitter.com/
com/developer/docs/api/ - https://developer.
Salesforce SOAP API linkedin.com/apis
https://developer.paypal.
com/docs/classic/api/
PayPalSOAPAPIArchitecture/
-Paypal SOAP API
(continued)

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

Table 1-1. (continued)

Topic SOAP

REST

Conclusion Use SOAP if you are dealing with
transactional operations and you
already have an audience that is
satisfied with this technology

Use REST if you're focused on
wide-scale API adoption or if your
APl is targeted at mobile apps

Web Architectural Style

According to Fielding, there are two ways to define a system.

« One is to start from a blank slate—an empty

whiteboard—with no initial knowledge of the system

being built or the use of familiar components until the

needs are satisfied.

« Asecond approach is to start with the full set of needs

for the system, and constraints are added to individual

components until the forces that influence the system

are able to interact in harmony with each other.

REST follows the second approach. In order to define a REST
architecture, a null-state is initially defined—a system that has no

constraints whatsoever and where component differentiation is nothing

but a myth—and constraints are added one by one. The following

subsections cover web architectural style constraints. Each of these
constrains defines how the framework for REST APIs should be architected

and designed. Security is another aspect which needs to be considered
independently as part of this framework when rolling out RESTful APIs to

the end users.

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

Client-Server

The separation of concerns is the core theme of the Web’s client-server
constraints.

The Web is a client-server-based system, in which clients and servers
have distinct parts to play.

They may be implemented and deployed independently, using any
language or technology, so long as they conform to the Web’s uniform
interface.

Uniform Resource Interface

The interactions between the Web’s components—meaning its clients,
servers, and network-based intermediaries—depend on the uniformity of
their interfaces.

Web components interoperate consistently within the uniform
interface’s four constraints, which Fielding identified as

» Identification of resources
e Manipulation of resources through representations
e Self-descriptive messages

e Hypermedia as the engine of application state
(HATEOAS)

Layered System

Generally speaking, a network-based intermediary will intercept client-
server communication for a specific purpose.
Network-based intermediaries are commonly used for enforcement of

security, response caching, and load balancing.

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

The layered system constraints enable network-based intermediaries
such as proxies and gateways to be transparently deployed between a
client and server using the Web’s uniform interface.

Caching

Caching is one of web architecture’s most important constraints. The
cache constraints instruct a web server to declare the cache ability of each
response’s data.

Caching response data can help to reduce client-perceived latency,
increase the overall availability and reliability of an application, and
control a web server’s load. In a word, caching reduces the overall cost of
the Web.

Stateless

The stateless constraint dictates that a web server is not required to
memorize the state of its client applications. As a result, each client must
include all of the contextual information that it considers relevant in each
interaction with the web server.

Web servers ask clients to manage the complexity of communicating
their application state so that the web server can service a much larger
number of clients. This trade-off is a key contributor to the scalability of
the Web's architectural style.

Code-on-Demand

The Web makes heavy use of code-on-demand, a constraint which enables
web servers to temporarily transfer executable programs, such as scripts or
plug-ins, to clients.

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

Code-on-demand tends to establish a technology coupling between
web servers and their clients, since the client must be able to understand
and execute the code that it downloads on-demand from the server.

For this reason, code-on-demand is the only constraint of the Web’s
architectural style that is considered optional.

HATEOAS

The final principle of REST is the idea of using hypermedia as the engine
of application state (HATEOAS). When developing a client-server solution
using HATEOAS, the logic on the server side might change independently
of the clients.

Hypermedia is a document-centric approach with the added support
for embedding links to other services and information within the
document format.

One of the uses of hypermedia and hyperlinks is composing complex
sets of information from disparate sources. The information could be within
a company private cloud or within a public cloud from disparate sources.

Example:

<podcast id="111">
<customer>http://customers.myintranet.com/customers/1
</customers>
<link>http://podcast.com/myfirstpodcast</link>
<description> This is my first podcast </description>
</podcast>

Each of these web architecture styles adds beneficial properties to the
web system.

By adopting these constraints, teams can build simple, visible, usable,
accessible, evolvable, flexible, maintainable, reliable, scalable, and
performant systems as shown in Table 1-2.

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

Table 1-2. Constraint and system property

By following the constraint ~ Gain the following system property
Client-server interactions Simple, evolvable, and scalable

Stateless communications Simple, visible, maintainable, evolvable, and reliable

Cacheable data Visible, scalable, and performant

Uniform interfaces Simple, usable, visible, accessible, evolvable, and
reliable

Layered system Flexible, scalable, reliable, and performant

Code-on-demand Evolvable

Note | have not covered security in this chapter as part of
REST fundamentals, but security is very important for rolling out
RESTful APls.

What Is REST?

We have briefly introduced REST with REST API fundamentals in the
previous section. This section has further introductory details about REST
concepts.

“REST” was coined by Roy Fielding in his Ph.D. dissertation to
describe a design pattern for implementing networked systems. REST
is Representational State Transfer, an architectural style for designing
distributed systems. It’s not a standard, but rather a set of constraints. It's
not tied to HTTP, but is associated most commonly with it.

10

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

REST Basics

Unlike SOAP and XML-RPC, REST does not really require a new message
format. The HTTP API is CRUD (create, retrieve, update, and delete).

GET: “Give me some info” (retrieve).
POST: “Here’s some update info” (update).
PUT: “Here’s some new info” (create).
DELETE: “Delete some info” (delete).

And more....

PATCH: The HTTP method PATCH can be used

to update partial resources. For instance, when

you only need to update one field of the resource,
PUTting a complete resource representation might be
cumbersome and utilizes more bandwidth.

HEAD: The HEAD method is identical to the GET
method, except that the server must not return a
message body in the response. This method is often
used for testing hypertext links for validity, accessibility,
and recent modification.

OPTIONS: This method allows the client to determine
the options and/or requirements associated with
aresource, or the capabilities of a server, without
implying a resource action or initiating a resource
retrieval.

Notion of “idempotency”: The idea that when sending
a GET, DELETE, or PUT to the system, the effect should
be the same whether the command is sent one or more
times, but POST creates an entity in the collection and
therefore is not idempotent.

11

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

REST Fundamentals

Just to remind you, about 8,356 APIs were written in REST by
ProgrammableWeb.com in 2016. REST is resource-based architecture. A
resource is accessed via a common interface based on the HTTP standard
methods. REST asks developers to use HTTP methods explicitly and

in a way that'’s consistent with the protocol definition. Each resource

is identified by a URL. Every resource should support the HTTP

common operations, and REST allows that resource to have different
representations, for example, text, XML, and JSON. The rest client can ask
for specific representation via the HTTP protocol (content negotiation).
Table 1-3 describes data elements used in REST.

Table 1-3. Structures of REST

Data element Description
Resource Conceptual target of a hypertext reference, for example,
customer/order

Resource identifier A uniform resource locator (URL) or uniform resource name
(URN) identifying a specific resource, for example, http://
myrest.com/customer/3435

Resource Information describing the resource, for example, tag, author,

metadata source link, alternate location, and alias names

Representation The resource content—JSON message, HTML document, JPEG

image
Representation Information describing how to process the representation, for
metadata example, media type and last-modified time
Control data Information describing how to optimize response processing,

for example, if-modified-since and cache-control-expiry

Let’s look at some examples.

12

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

Resources

First, a REST resource to GET a list of podcasts:
http://prorest/podcasts
Next, a REST resource to GET details of podcastid 1:

http://prorest/podcasts/1

Representations
Here is an XML representation of a response—GET customer for an id.

<Customer>
<id>123</id>
<name>John</name>

</Customer>

Next, a JSON representation of a response—GET customer for an id:

{"Customer”:{"id":"123","name":"John"}}

Content Negotiation

HTTP natively supports a mechanism based on headers to tell the server
about the content you expect and you're able to handle. Based on these
hints, the server is responsible for returning the corresponding content in

the correct format. Figure 1-1 shows an example.

13

CHAPTER1 FUNDAMENTALS OF RESTFUL APIS

Client R @ Server
Request
Only supports ikhodie ,| Only supports
JSON format XML format
\) 406 status _)

code

Figure 1-1. Content negotiation

If the server doesn’t support the requested format, it will send back a
406 status code (not acceptable) to notify the client that made the request
(“The requested resource is only capable of generating content not
acceptable according to the Accept headers sent in the request”) according
to the specification.

Summary

REST identifies the key architectural principles of why the Web is prevalent
and scalable. The next step in the education of the Web is to apply these
principles to the semantics Web and the world of web services. REST offers
a simple, interoperable, and flexible way of writing web services that can
be very different than the WS-* that so many of you had training in. In the
next chapter, we will introduce Micronaut—a modern, JVM-based, full-
stack framework for building modular, easily testable microservice and
serverless applications. We will also compare it with similar framework
Spring Boot.

14

CHAPTER 2

Micronaut

Micronaut is a JVM-based modern full-stack microservice framework. This
new framework has been developed by the Grails team with an intention
to solve problems which have been identified over the years while building
the real-world microservices applications.

One of the most exciting features of Micronaut is its compile-time
dependency injection mechanism. Most frameworks use reflection and
proxies to perform dependency injection at runtime. Micronaut, however,
builds its dependency injection data at compile time. The result is faster
application startup and smaller memory footprints.

Ithink it is not an exaggeration if I say we are living in the age of
microservices. Microservices became the de facto architecture pattern
for every new enterprise-scale application that is being implemented,
and many existing monolithic applications are getting migrated into
microservices. In the case of the Java world, Spring Boot turned out to be
the standard framework to develop microservices. There were some other
frameworks like DropWizard, Apache Karaf, and Jersey. But they were
not able to give tough competition to Spring Boot, and slowly their usage
percentage came down and became insignificant over a period of time.

If you observe the evolution of Spring Boot, initially it was not proposed
as a microservices solution from Spring. It was initially proposed and
implemented as the containerless web application, and the developer
community started using it for microservices implementation. But Spring

Boot got its own limitations like

© Sanjay Patni 2025
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_2

CHAPTER2 MICRONAUT
« Fixed single language
« Lack of built-in support for data accessing
« Lack of simpler unit testing
« Lack of built-in service discovery
e Lack of built-in load balancing

We need explicit configuration which can be achieved through
the cloud services instead of having the built-in support within the
framework itself.

Here comes Micronaut which contains the aforementioned built-in
features and is designed with single and primary intent to serve as the
vehicle for microservices development.

Comparison of Micronaut with Spring Boot
Ease of Installation

Both Spring Boot and Micronaut won't be complex for installation and
can be installed easily by following the installation instructions. Both
frameworks need the following prerequisites:

« A favorite text editor or IDE
« JDK 1.8 orlater
« Gradle or Maven latest versions

The code which has been generated through the CLI tool can be
directly imported into your IDE:

« Spring Tool Suite (STS): Spring Boot

« Visual Studio Code: Micronaut

16

CHAPTER2 MICRONAUT

Natively Cloud Enabled

When it comes to Spring Boot, to support the previously discussed cloud-
specific features, we need to depend on the third-party cloud services or
libraries; it doesn’t support any of the above-listed features by default, so
Micronaut has an advantage here.

The following list of cloud-specific features is directly integrated into
the Micronaut runtime:

e Service discovery.

e Eureka, Consul, or ZooKeeper service discovery servers
are being supported.

¢ The Kubernetes container runtime is supported by
default.

e Client-side load balancing.

¢ Netflix Ribbon can be used for load balancing.
e Distributed configuration.

e Distributed tracing.

« Serverless functions.

Serverless Functions

Serverless architecture, where developers will deploy the function. From
there onward, they are completely managed by the cloud environment,
that is, invocation, execution, and control. But Micronaut’s fast startup
time, compile-time approach, and low-memory footprint make this
framework a great candidate for developing functions, and in fact,
Micronaut features have the dedicated support for implementing and
deploying functions to the AWS Lambda and any FaaS system that
supports running functions as containers.

17

CHAPTER2 MICRONAUT

Application Configuration

Micronaut is inspired from both Grails and Spring Boot in integrating
configuration properties from different sources directly into the core IoC
container. Configurations can be provided by default in either YAML,
JSON, Java properties, or Groovy files. The convention is to search for a
file called application.yml, application.properties, application.json, or
application.groovy.

« Command-line arguments

« Properties from SPRING_APPLICATION_JSON (only if
there is any Spring dependency)

+ Properties from MICRONAUT_APPLICATION_JSON
« Java system properties
« OS environment variables

« Each environment-specific properties like application-
{environment}.{extension} (could be .properties, .json,
.yml, or .groovy)

« Application-specific properties from the application.
{extension} (could be .properties, .json, .yml, or

.groovy)
« Special properties (random values)

Spring Boot supports all the preceding property locations; in addition,
it also supports other property locations:

« Spring Boot devtools global settings properties
« (@TestPropertySource annotations on your tests

« @SpringBootTest#properties annotation attribute on
your tests

18

CHAPTER2 MICRONAUT

¢ ServletConfig init parameters
e ServletContext init parameters
¢ JNDI attributes from java:comp/env

+ @PropertySource annotations on your
@Configuration classes

« Default properties (specified by setting
SpringApplication.setDefaultProperties)

“Spring Boot provided more ways to handle with properties when we
compared it against Micronaut.”

Messaging System Support

Spring Boot supports the integration of external messaging
systems, such as

e RabbitMQ
e Apache Kafka
o ActiveMQ
« Artemis
Micronaut also supports the popular messaging systems, such as
« RabbitMQ
e« Apache Kafka

“Micronaut has the embedded support for the Apache Kafka.” “Both
frameworks have the support of the popular messaging systems but Spring
Boot supports more tools.”

19

CHAPTER2 MICRONAUT

Security

Spring Boot supports the following security mechanisms by default:

20

MVC security
WebFlux security
OAuth 2

Actuator security

Micronaut supports the following security mechanisms by default:

Authentication providers
Security rules

IP pattern rule

Secured annotation
Intercept URL map

Built-in endpoints security
Authentication strategies
Basic auth

Session authentication
JSON Web Token

Built-in security controllers
Retrieve the authenticated user

Security events

CHAPTER 2

Caching

Spring Boot supports the following caching providers:

Redis
Couchbase
Generic

JCache (JSR-107)
EhCache 2.x
Hazelcast
Infinispan

Caffeine

Micronaut supports the following list of caching providers:

Caffeine (by default, Micronaut supports it)

Redis

MICRONAUT

“Obviously, Spring Boot is leading in supporting caching providers.”

Management and Monitoring

Micronaut inspired by the Grails, Spring Boot, and Micronaut

management dependency adds support to monitor your applications
via endpoints, the special URIs that return details about the state of your

application and health:

Creating endpoints

Built-in endpoints

21

CHAPTER2 MICRONAUT

API Portfolio

This book will take three business domain problems and build a portfolio
of APIs.

Online Flight

To illustrate features of Micronaut, this book will take an example of an
“online flight” application. The application will enable passengers to view
flight they are traveling on. You will define two component classes:

1. A service component that lets a passenger see what
flights they are booked in.

2. Arepository component that stores passengers for a
flight. Initially, you will store passengers in memory

for simplicity.
Object Field Type
Passenger Name String
Flight Origin String

Destination String
Departure Datetime
Flight# int

22

CHAPTER2 MICRONAUT

Message

This API will enable sending messages to the users in the system.

Object Fields Type

Message Message String
From String
To String

Creation Date Date

Quote

To illustrate features of Micronaut data, this book will take an example of
an “online quote” application. The application will enable buyers to create
and view quotes including products they want to buy. You will define three
component classes:

1. Catalog to list products with their price

2. Quote for a customer including line items of the
products with total price

3. Quote line item including products with unit price

and quantity

Object Field Type

Product Name String
Description String
Unit Price Float

Quote Customer String
Quote Date Date

(continued)

23

CHAPTER2 MICRONAUT

Object Field Type

Address Object
Quote Line Object
Total Price Float
Quote Line Product Object
Quantity Long
Unit Price Float

Software

This book will use the following software for the coding problems.

Micronaut

https://micronaut.io/download/

INSTALLING WITH SDKMAN!

This tool makes installing the Micronaut framework on any Unix-based
platform (Mac OSX, Linux, Cygwin, Solaris, or FreeBSD) easy.

Simply open a new terminal and enter

$ curl -s https://get.sdkman.io | bash

Follow the on-screen instructions to complete installation. Open a new
terminal or type the following command:

$ source "$HOME/.sdkman/bin/sdkman-init.sh"
Then install the latest stable version of the framework:

$ sdk install micronaut

24

CHAPTER2 MICRONAUT

If prompted, make this your default version.
After installation is complete, it can be tested with

$ mn --version

That's all there is to it!

Now let’s create “hello from Micronaut.”

It is assumed that latest Micronaut, Gradle, and JDK 21 are installed.
mn create-app hello-world

JDK 21

https://jdk.java.net/archive/

POSTMAN

www . postman . com/downloads/

CURL

https://curl.se/download.html

You have two choices to use the IDE.

Visual Studio Code

https://code.visualstudio.com/download

IntelliJ

www. jetbrains.com/idea/download/

25

CHAPTER2 MICRONAUT

Maven
https://maven.apache.org/download.cgi

The application created in the previous section contains a “main class”
located in src/main/java that looks like the following:

package hello.world;
import io.micronaut.runtime.Micronaut;
public class Application {
public static void main(String[] args) {
Micronaut.run(Application.class);

}
}
This is the class that is run when running the application via Gradle or
via deployment.

Using any text editor of your choice, create the following file in the
same folder where Application class is created.

package hello.world;
import io.micronaut.http.MediaType;
import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Get;
@Controller("/hello") public class HelloController {
@Get (produces = MediaType.TEXT PLAIN)
public String index() {

return "Hello from Micronaut";

}
}

26

CHAPTER2 MICRONAUT

Save the file as HelloController.java. Files will look like the preceding
example. Now to run from the command prompt

cd ~/hello-world
./gradlew run

curl http://localhost:8080/hello

Summary

In this chapter, we reviewed the features of Micronaut and compared
those with Spring Boot. We also analyzed sample domains—flight status
message and quote to create a portfolio of APIs using Micronaut.

27

CHAPTER 3

Introduction: XML
and JSON

This chapter introduces basic concepts about XML and JSON. At the end of
this chapter, there is an exercise to demonstrate XML and JSON responses

from a Micronaut app.

What Is XML?

Extensible Markup Language (XML) is a text-based markup language
which is a standard for data interchange on the Web. As with HTML, you
identify data using tags (identifiers enclosed in angle brackets, like this:
<...>). Collectively, the tags are known as “markup.” It puts a label on a
piece of data that identifies it (e.g., <message>. . .</message>). In the same
way that you define the field names for a data structure, you are free to use
any XML tags that make sense for a given application. Naturally, though,
for multiple applications to use the same XML data, they have to agree on
the tag names they intend to use. Here is an example of some XML data

you might use for a messaging application:

<message>

<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Cool>

© Sanjay Patni 2025
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_3

CHAPTER 3 INTRODUCTION: XML AND JSON

</subject>

<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

Tags can also contain attributes (additional information included as
part of the tag itself) within the tag’s angle brackets. If you consider the
information in question to be part of the essential material that is being
expressed or communicated in the XML, put it in an element. For human-
readable documents, this generally means the core content that is being
communicated to the reader. For machine-oriented record formats, this
generally means the data that comes directly from the problem domain.
If you consider the information to be peripheral or incidental to the main
communication, or purely intended to help applications process the main
communication, use attributes. The following example shows an email
message structure that uses attributes for the to, from, and subject fields:

<message to=you@yourAddress.com from=me@myAddress.com
subject="XML Is Really Cool">

<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

One really big difference between XML and HTML is that an XML
document is always constrained to be well formed. There are several rules
that determine when a document is well formed, but one of the most
important is that every tag has a closing tag. So, in XML, the </to> tag
is not optional. The <to> element is never terminated by any tag other
than </to>.

30

CHAPTER 3 INTRODUCTION: XML AND JS

ON

Note Another important aspect of a well-formed document
is that all tags are completely nested. So you can have
<message>..<to>..</to>..</message>, but never
<message>..<to>..</message>..</to>.

An XML Schema is a language for expressing constraints about XML
documents. There are several different schema languages in widespread
use, but the main ones are Document Type Definitions (DTDs). It
defines the legal building blocks of an XML document. It also defines the
document structure with a list of legal elements and attributes.

XML Comments

XML comments look just like HTML comments:

<message to=you@yourAddress.com from=me@myAddress.com
subject="XML Is Really Cool">

<!-- This is comment -->

<text>

How many ways is XML cool? Let me count the ways...
<Jtext>

</message>

To complete this introduction to XML, note that an XML file always
starts with a prolog. The minimal prolog contains a declaration that
identifies the document as an XML document, like this:

<?xml version="1.0"?>

31

CHAPTER 3 INTRODUCTION: XML AND JSON
The declaration may also contain additional information, like this:

<?xml version="1.0" encoding="IS0-8859-1" standalone="yes"?>

« Version: Identifies the version of the XML markup
language used in the data. This attribute is not optional.

« Encoding: Identifies the character set used to encode
the data. “ISO-8859-1" is “Latin-1,” the Western
European and English language character set. (The
default is compressed Unicode: UTF-8.)

« Standalone: Tells whether or not this document
references an external entity or an external data type
specification. If there are no external references, then

“yes” is appropriate.

Why Is XML Important?

It is important because it allows the flexible development of user-

defined document types, which means that it provides a persistent, robust,
nonproprietary, and verifiable file format which can be used for the storage
and transmission of data for both on and off the Web. In addition, XML

« Provides plain text: Plain text makes it readable.

« Provides data identification: By use of tags, data can
be identified.

« Provides styleability: Using XSLT (Extensible
Stylesheet Language Transformations), data can be
made in a presentable form.

o Is easily processed (XML parsers, as well as well-
formed parsers).

« Ishierarchical (through nested tags).

32

CHAPTER 3 INTRODUCTION: XML AND JSON

How Can You Use XML?

There are several basic ways to make use of XML:

¢« Document-driven programming: Where XML
documents are containers that build interfaces and

applications from existing components

¢ Archiving: The foundation for document-driven
programming, where the customized version of a
component is saved (archived) so it can be used later

¢ Binding: Where the DTD or schema that defines an
XML data structure is used to automatically generate
a significant portion of the application that will
eventually process that data

Pros and Cons of XML

Some of the pros and cons of XML are explained as follows:
¢« Pros

Readable and editable by developers.

— Error checking by means of schema and DTDs.
— Can represent complex hierarchies of data.

Unicode gives flexibility for international operation.

Plenty of tools in all computer languages for both creation and

parsing.

33

CHAPTER 3 INTRODUCTION: XML AND JSON

« Cons

— Bulky text with low payload/formatting ratio (but can be
compressed).

— Both creation and client-side parsing are CPU intensive.

— Common word processing characters are illegal (MS Word
“smart” punctuation, for example).

— Images and other binary data require extra encoding.

What Is JSON?

JSON or JavaScript Object Notation is a lightweight text-based open
standard designed for human-readable data interchange. Conventions
used by JSON are known to programmers, which include those with
knowledge of C, C++, Java, Python, Perl, etc.

« The format was specified by Douglas Crockford.
« Itwas designed for human-readable data interchange.

« Ithasbeen extended from the JavaScript scripting
language.

« The filename extension is . json.
e TheJSON Internet media type is application/json.
e« JSON s easy to read and write.

« JSON islanguage independent.

34

CHAPTER 3 INTRODUCTION: XML AND JSON

JSON Syntax

In this section, we will discuss what JSON’s basic data types are and their
syntax. Figure 3-1 shows the basic data types of JSON.

value

| |]
I |_slring_§ |

armay
— G

Figure 3-1. Basic data types

An illustration displays the value that can be used in various data
types. The data types are string, number, object, array, true, false, and null.

Strings

Strings are enclosed in double quotes and can contain the usual
assortment of escaped characters.

Numbers

Numbers have the usual C/C++/Java syntax, including exponential (E)
notation. All numbers are decimal—no octal or hexadecimal.

Objects

An object is an unordered set of a name/value pair. The pairs are enclosed
within braces ({ }).
Example:

{ "name": "html", "years": 5 }

35

CHAPTER 3 INTRODUCTION: XML AND JSON

Pairs are separated by commas. There is a colon between the name
and the value.
The syntax of a JSON object is shown in Figure 3-2.

object

O}

ot e D—]

(ONO

Figure 3-2. JSON object

A diagram depicts the object, string, and value structure for JSON.

Arrays

An array is an ordered collection of values. The values are enclosed within
brackets. The syntax of JSON arrays is shown in Figure 3-3.

oL =) Loy

Figure 3-3. JSON arrays

A diagram depicts the array and value structure for JSON.

Booleans

It can have either true or false values.

The value is that it's empty.

36

CHAPTER 3 INTRODUCTION: XML AND JSON

Why Is JSON Important?

There is a reason why JSON is becoming very popular as a data

exchange format (more important than it being less verbose than XML):
programmers are sick of writing parsers! But “wait,” you say. “Surely there
are XML parsers available for you to use so that you don’t have to roll your
own.” Yes, there are. But while XML parsers handle the low-level syntactic
parsing of XML tags, attributes, etc., you still need to walk the DOM tree
or, worse, build one yourself with nothing but a SAX parser (Objective-C
iPhone SDK I'm looking at you!). And that code you write will of course
depend on whether the XML you need to make sense of looks like this:

1 <person first-name="John" last-name="Smith"/>

or this:
1 <person>
2 <first-name>John</first-name>
3 <last-name>Smith</last-name>
4 </person>
or this:
1 <object type="Person">
2 <property name="first-name">John</property>
3 <property name="last-name">Smith</property>
4 </object>

or any of the myriad of other ways one can conceive of expressing the
same concept (and there are many). The standard XML parser does not
help you in this regard. You still need to do some work with the parse tree.

37

CHAPTER 3 INTRODUCTION: XML AND JSON

Working with JSON is a different, and superior, experience. First, the
simpler syntax helps you avoid the need to decide between many different
ways of representing your data (as we saw earlier with XML), much less
which rope to hang yourself with. Usually, there is only one straightforward

way to represent something:

1 { "first-name" : "John",
2 "last-name" : "Smith" }

How Can You Use JSON?

The following discusses how you can use JSON:

« Itis used while writing JavaScript-based applications
that include browser extensions and websites.

« JSON format is used for serializing and transmitting
structured data over a network connection. It is
primarily used to transmit data between a server and

web applications.

« Web services and APIs use JSON format to provide

public data.

Pros and Cons of JSON

The following are pros and cons of JSON:

Pros
« Easytoread/write/parse

« Reasonably succinct (compared with XML, for

instance)

¢ Common “standard” with many libraries available

38

CHAPTER 3 INTRODUCTION: XML AND JSON

Cons
e Not as light as binary formats.
« Can’tuse comments.

p i

« It's “encapsulated,” meaning that you can’t readily
stream/append data, but have to break it up into
individual objects. XML has the same problem,

whereas CSV does not.

« Difficult to describe the data you're presenting (easier
with XML).

« Unable to enforce, or validate against, a
structure/schema.

XML and JSON Comparison

This section compares XML and JSON based upon different properties.

39

CHAPTER 3

INTRODUCTION: XML AND JSON

Table 3-1. XML and JSON comparison

Property

XML

JSON

Simplicity

Self-describing

Processing

Performance

Openness

Object-oriented

Interoperability

Internationalization

Extendability

Adoption

XML is simple and
human-readable

Yes

XML is processed
easily

Not optimized for
performance due
to tags

XML is open

XML is document
oriented

XML is
interoperable

Supports Unicode
XML is extensible

XML is widely
adopted by the
industry

JSON is much simpler than XML as well as
human-readable

Yes

JSON is processed more easily because its
structure is simpler

Faster than XML because of size

JSON is at least as open as XML, perhaps
more so because it is not in the center of a
corporate/political standardization struggle

JSON is data oriented. JSON can be
mapped more easily to object-oriented
systems

JSON has the same interoperability
potential as XML

Supports Unicode

JSON is not extensible because it does
not need to be. JSON is not a document
markup language, so it is not necessary to
define new tags or attributes to represent
data in it

JSON is just beginning to become known.
Its simplicity and the ease of converting
XML to JSON make JSON ultimately more
adoptable

40

CHAPTER 3 INTRODUCTION: XML AND JSON

Implementing APIs to Return XML
and JSON Messages

https://micronaut.io/launch/

As per the screen, select

Application Type: Micronaut Application

Java Version: 21

Name: message

Package: com.rest

Build Tool: maven

Click “Generate Project”

An image of the Micronaut application. The Java version is 21, the
name is message, and the base package is com.rest. The Micronaut
version is 4.7.1, the language is Java, the build tool is Maven, and the test
framework is J Unit.

- -
ol Jolsl Jalel=]
Using the Micronaut CLI

mn create-app --build=maven --jdk=21 --lang=java --test=junit com.rest. message 8
Micronaut Application - - message com.rest
® wun ® ava O Gradle @ Junit
O &732-SNAPSHOT O Groovy O Gradle Kotlin O Spock
O 30 O Kotlin ® Maven O Kotest

Figure 3-4. Screenshot of command-line option to create
application code

41

CHAPTER 3 INTRODUCTION: XML AND JSON

Once code is generated cd to message folder. The following code

creates a domain object Message with an attribute message.

package com.rest.model;

import javax.validation.constraints.NotNull;
public class Message {

@NotNull

private String message;

public String getMessage() {

}

return mes sage;

public void setMessage(String message) {

this.message = message;

Now create a new folder controller in src/main/java/com/rest folder

after navigating to message code generated by Micronaut.

42

The following code exposes two endpoints:

a. message/xml for getting the message attribute
value in XML

b. message/json for getting the message attribute value
in JSON format

package com.rest.controllers;

import com.rest.model.Message;

import io.micronaut.http.annotation.Get;

import io.micronaut.http.annotation.Controller;
import io.micronaut.http.HttpResponse;

import io.micronaut.http.MediaType;

import io.micronaut.http.annotation.Produces;

CHAPTER 3 INTRODUCTION: XML AND JSON

@Controller("/message”) // <2>
public class MessageController {
@Produces (MediaType.TEXT XML)
@Get("/xml")
public HttpResponse<?> messageXml() {
Message message = new Message();
message.setMessage("Hello from Micronaut");
final String xml = encodeAsXml(message);
return HttpResponse.ok(xml).
contentType(MediaType.APPLICATION XML TYPE);
}
@Produces (MediaType. TEXT _JSON)
@Get("/json")
public HttpResponse<?> messageJson() {
Message message = new Message();
message.setMessage("Hello from Micronaut");
return HttpResponse.ok(message);
}
private String encodeAsXml(final Message message) {
return String.format("<message>%s</message>",
message.getMessage());

}

You could run the code in the message folder by using following
command:

./mvnw mn:run

Using POSTMAN as per the screenshot view JSON and XML response
of message

43

CHAPTER 3 INTRODUCTION: XML AND JSON

GET v hup://localhost:8080/message/json
Headers (2 °
KEY VALUE

Accept text/json
Content-Type text/json
ody ¢

Pretty " reviev JSON » =

1+ |{

“message”: “Hello from Micronaut"

Figure 3-5. REST APl invocation in POSTMAN for the message service
Jfor JSON response

GET v hup//localhost:8080/message/xml
Headers (2) e
KEY VALUE
Accept text/xml
Content-Type text/xml
3ody
Pretty 2ay XML ¥

1 «<message>Hello from Micronaut</message>

Figure 3-6. REST API invocation in POSTMAN for the message
service for XML response

44

CHAPTER 3 INTRODUCTION: XML AND JSON

Summary

In this chapter, we reviewed messaging using XML and JSON formats
and compared them. Then, we developed APIs to return XML and JSON
responses from a Micronaut app.

45

CHAPTER 4

API Design and
Modeling

This chapter starts with API design strategies and then goes into API
creation process and modeling. Best practices for REST API design are
discussed, followed by API solution architecture. In the exercises, a
simple API is designed for podcast subscription and then modeling using
OpenAPL

API Design Strategies

As the Ul is to UX (user experience), the API is to APX (Application
Programming Experience). In APX,| it is important to answer the following
questions:

¢« What should be exposed?
e What is the best way to expose the data?
« How should the API be adjusted and improved?

In addition, let’s discuss why we should develop a nice Application
Programming Experience.

A nice API will encourage the developers to use it and share it with others,
creating a virtuous cycle where each additional successful implementation
leads to more engagement and more contributions from developers who add
value to your service. I'll start by saying that API design is hard.

© Sanjay Patni 2025 47
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_4

CHAPTER 4 API DESIGN AND MODELING

Also, a nice API will help to grow an ecosystem of employees,
customers, and partners who can use and help to continue to evolve your
API in ways that are mutually beneficial.

There are four strategies for API design:

« Bolt-on strategy: This is when you have an existing
application and add an API after the fact. This takes
advantage of existing code and systems (Figure 4-1).

Backend System
- Product
Integration

« Greenfield strategy: This is the other extreme. This
is a strategy behind “API first” or “mobile first” and is

the easiest scenario to develop an API. Since you're

Figure 4-1. Bolt-on strategy

starting from scratch, you can make use of technologies
and concepts that may not have been available before
(Figure 4-2).

- Main Product

Mobile Device

Backend System

Integrations

Figure 4-2. Greenfield strategy

48

CHAPTER 4 API DESIGN AND MODELING

A greenfield or API-first strategy is a simulation-based design
implementation.

The simulation of a back-end system is the development of a back-end
system without needing fully implemented back-end systems. With the
simulation of APIs, consumers can start the development of apps without
fully developed APIs.

« Agile design strategy: Agility is based on the premise
that you can start without a full set of specs. You can
always adapt and change the specs later, as you go and
learn more. Through multiple iterations, architectural
design can converge to the right solution. An agile
approach should only be applied until the API is
published.

« Finally, you have the facade strategy, which is the
middle ground between greenfield and bolt-on. In
this case, you can take advantage of existing business
systems, yet shape them to what you prefer and need.
This gives them the ability to keep working systems in
place while making the underlying architecture better.

API Creation Process and Methodology

In this section, we are going to review the API creation process and
methodology. In order to deliver great APIs, the design must be a first-
order concern. Like optimizing for UX (user experience) has become a
primary concern in UI development, also optimizing for APX (API user

experience) should be a primary concern in API development.

49

CHAPTER 4 API DESIGN AND MODELING

Process

First, determine your business value. When thinking about business
value, think of the “elevator pitch” about why you need an API. Developer
engagement is not a great goal; you need a tangible goal: increase user
engagement, move activity off the main product to the API, engage and
retain partners, and so on.

Choose your metrics, for example:

« Number of developer keys in use

Number of applications developed
« Number of users interacting via the API
« Number of partner integrations

« Howthe API is enhancing goals of the company as
a whole rather than simply determining how many
people have begun to integrate

APl Methodology

It consists of five phases in the case of the agile strategy:
« Domain analysis or API description
e Architecture design
s« Prototyping
« Building an API for production

« Publishing the API

50

CHAPTER 4 API DESIGN AND MODELING

Domain Analysis or APl Description

Define your use cases for domain analysis. Who are the participants? Are
they external or internal? Which API solutions do consumers want to build
with the API? Which other API solutions would be possible with the API?
What would the API that the consumer wants to use look like? What
apps does the consumer want to build? What data or domain objects does
the consumer want to use in their app?
Break activities into steps or write down the usage scenario:

« A dependent resource cannot exist without another.

— For example, the association of a podcast and its consumer
cannot be determined unless the podcast and its consumer
are created.

¢« Anindependent resource can exist without another.

— For example, a podcast resource can exist without
any dependency.

e An associative resource exists independently but still
has some kind of relation, that is, it may be connected
by reference.

— As mentioned earlier

The next step is to identify possible transitions between resource
states. Transitions between states provide an indicator of the HTTP
method that needs to be supported. For the example of the podcast which
could be added to a playlist, let’s analyze different states (Table 4-1).

CHAPTER 4 API DESIGN AND MODELING

Table 4-1. Domain analysis example

State Operation Domain object Description
CREATE POST PODCAST Creates podcast
READ GET PODCAST Reads podcast
READ GET/{podcast_id} PODCAST Reads podcast
UPDATE PUT/{playlist_id} PODCAST Updates podcast

Also, verify by building a simple demo app. More than curl calls,
this demo app provides a showcase for the API and can be reused in
later stages.

Architecture Design

In this phase, the API description or analysis phase is further redefined.
Architecture design should make decisions about

« Protocol

« Endpoints

« URIdesign

+« Security

« Performance or availability
Detail design description:

« Resources

« Representations

+ Content types

« Parameters

52

CHAPTER 4 API DESIGN AND MODELING

« HTTP methods
« HTTP status codes
¢ Consistent naming

In addition, look into reusability by looking at common APIs in the
API portfolio. Design decisions should be consistent with the API in the
API portfolio. The API portfolio is a collection of APIs in an enterprise, as
discussed in Chapter 5.

As part of the design verification, the demo app can be further
extended here with design decisions. Issues to be verified are as follows:

e« The APTis still easy to use.
« The APIis simple and supports use cases.

« The API follows an architectural style.

Prototyping

Prototyping is the preparation for the production implementation. Take
complex use cases and implement end to end with high fidelity. The
prototype is incomplete and uses shortcuts. It can have a simulation of the
API if the back-end functionality is not available at the time of building
the prototype. Once the prototype is made, then there is the acceptance
test with pilot consumers as verification of the API. Pilot consumers are
internal customers from the API provider’s team.

Implementation

The implementation needs to conform to the API description and needs to
be delivered as soon as possible. In addition, the API is fully integrated into
the back-end system and API portfolio. This should have all the desired

functionality as well as nonfunctional aspects of the AP], like performance,

53

CHAPTER 4 API DESIGN AND MODELING

security, and availability. At this stage, the API description should be stable
since it has gone through multiple iterations. For verification, handpicked
API consumers could be identified at this stage.

Publish

Publishing of the API does not require a lot of work, but this is a

big milestone for the API. From an organizational perspective, the
responsibility of the API is transferred from development to the
operational unit. After publishing, there is no agility in the development
process. Any change requires a traditional change management process.
As part of the verification, there is analysis on successful vs. failed API calls
and documentation gaps which are supported by the maintenance team.

API Modeling

Modeling the schema for your API means creating a design document that
can be shared with other teams, customers, or executives. A schema model
is a contract between your organization and the clients who will be using
it. A schema model is essentially a contract describing what the API is, how
it works, and exactly what the endpoints are going to be. Think of it as a
map of the API, a user-readable description of each endpoint, which can
be used to discuss the API before any code is written. Figure 4-3 shows the
API modeling framework where you have API specifications defined and
generate API documentation. Also, generate server and client source code.

54

CHAPTER 4 API DESIGN AND MODELING

Source
REST
Client
m Generate APl doucmentation " HTML

® API API

o = \,szﬂ“‘w Specification Documentation
e
RESTful
Webservice

Figure 4-3. API modeling

Creating this model before starting development helps you to ensure
that the API you create will meet the needs described by the use cases
you've identified. The three schema modeling systems and the markup

languages they use are as follows:
« RAML: Markdown, relatively new. Good online
modeling tool: RESTful API modeling language
« OpenAPI (Swagger): JSON, large community
¢ Blueprint: Markdown, low adoption

The OpenAPI (Swagger) exercise in this chapter shows the modeling

done for the podcast resource.

Each of the schema modeling languages has tools available to
automate testing or code creation based on the schema model you've
created, but even without this functionality, the schema model helps you
to have a solid understanding of the API before a single line of code is

written.

55

CHAPTER 4 API DESIGN AND MODELING

Figure 4-4 shows the API modeling tool.

Write once. Use many. Creative laziness encouraged.

Figure 4-4. API modeling tool

Comparison of APl Modeling

Table 4-2. Comparison of API modeling tools

Category Property RAML API Blueprint Swagger
What is behind Format YAML Markdown (MOSN) JSON
name?
Available at GitHub GitHub GitHub
Sponsored by ~ MuleSoft ~ Apiary SmartBear
Initial commit ~ Sep 2013 Apr 2013 Jul 2011
Commercial Yes Yes
offering
How doesit ~ Resources X X X (“api”)
model REST?
Methods/ X X (“actions”)
actions (“methods”) (“operations”)
Query X X
parameters

(continued)

Table 4-2. (continued)

CHAPTER 4 API DESIGN AND MODELING

Category Property RAML API Blueprint Swagger
Path/URL X X X
parameters
Representation X X X
Header X X X
parameters
Documentation X X X
References http:// https:// http://

raml.org apiblueprint. swagger.io
org

Design API first Design first Existing API

Code generation X X
Who are the Apigee,
customers? Microsoft,

PayPal

In Summary

« Swagger has a very strong modeling language for

defining exactly what's expected of the system—very

useful for testing and creating coding stubs for a set
of APIs.

« RAML is designed to support a design-first

development flow and focuses on consistency.

e API Blueprint is more documentation focused, with

user-readable models and documentation as its first
priority.

57

CHAPTER 4 API DESIGN AND MODELING

Each project brings different strengths and weaknesses to the table,
and in the end, it’s really about what strengths you need and which
weaknesses you cannot afford. Overall, RAML fared the best in these
different categories, and while the developer community is not as large as
the others, I think it's safe to say it will keep growing.

The overall winner is RAML.

Best Practices

REST is an architectural style and not a strict standard; it allows for a lot of
flexibility. Because of that flexibility and freedom of structure, there is also
a big appetite for design best practices. These best practices are discussed
here in this section.

Keep Your Base URL Simple and Intuitive

The base URL is the most important design affordance of your API. A
simple and intuitive base URL design makes using your API easy.
Affordance is a design property that communicates how something should
be used without requiring documentation. A door handle’s design should
communicate whether you pull or push. For web API design, there should
be only two base URLSs per resource. Let’s model an API around a simple
object or resource (a customer) and create a web API for it. The first URL is
for a collection; the second is for a specific element in the collection:

« [Jcustomers: Collection
o [customers/1: Specific element

Boiling it down to this level will also force the verbs out of your base
URLSs. Keep verbs out of your URLs as shown in Table 4-3.

58

CHAPTER 4 API DESIGN AND MODELING

Table 4-3. Nouns and verbs

Resource POST create GET read PUT update DELETE delete
/customers New List customers ~ Bulk update Delete all
customer
/customers/ - Show If exists, Delete
12 customer 12 update customer 12
If not, error
In Summary

Use two base URLs per resource. Keep verbs out of
your base URLs. Use HTTP verbs to operate on the
collections and elements.

The level of abstraction depends on your scenario. You
also want to expose a manageable number of resources.

— Aim for concrete naming and to keep the number of
resources between 12 and 24,

An intuitive API uses plural rather than singular nouns
and concrete rather than abstract nouns.

Resources almost always have relationships to other
resources. What'’s a simple way to express these
relationships in a web API? Let’s look again at the API
we modeled in nouns are good, verbs are bad—the API
that interacts with our podcast resource. Remember,
we had two base URLs: /podcasts and /podcasts/1234.
We're using HTTP verbs to operate on the resources

59

CHAPTER 4 API DESIGN AND MODELING

and collections. Our podcasts belong to customers. To
get all the podcasts belonging to a specific customer
or to create a new podcast for that customer, do a GET
or a POST:

— GET /customers/5678/podcasts
— POST /customers/5678/podcasts

« Sweep complexity under the “?”. Make it simple for
developers to use the base URL by putting optional
states and attributes behind the HTTP question mark.
To get all customers in sfo city of ca state of usa
country, use a GET:

— GET /customers?country=usa&state=ca&city=so

Error Handling

Many software developers, including myself, don’t always like to think
about exceptions and error handling, but it is a very important piece of
the puzzle for any software developer and especially for API designers.
Why is good error design especially important for API designers? From
the perspective of the developer consuming your web API, everything

at the other side of that interface is a black box. Errors therefore become

a key tool providing context and visibility into how to use an API. First,
developers learn to write code through errors. The “test-first” concepts

of the extreme programming model and the more recent “test-driven
development” models represent a body of best practices that have evolved
because this is such an important and natural way for developers to

work. Second, in addition to when they're developing their applications,
developers depend on well-designed errors at the critical times when they
are troubleshooting and resolving issues after the applications they've built
using your API are in the hands of their users.

60

CHAPTER 4 API DESIGN AND MODELING

Handling errors: Let's take a look at how three top APIs approach
« Facebook

HTTP Status Code: 200

{"type" : "OauthException", "message":"(#803) Some of
the aliases you requested do not exist: foo.bar"}

« Twilio

HTTP Status Code: 401

{"status" : "401", "message":"Authenticate","code":
20003, "more info": "http://www.twilio.com/docs/
errors/20003"}

¢ Another example of error messaging from SimpleGeo
HTTP Status Code: 401
{"code" : 401, "message": "Authentication Required"}

When you boil it down, there are really only three outcomes in the
interaction between an app and an APT:

¢ Everything worked: Success
e The application did something wrong: Client error

¢« The API did something wrong: Server error

Error Code

Start by using the following three codes which should map to the three
outcomes earlier. If you need more, add them. But you shouldn’t need to
go beyond:

61

CHAPTER 4 API DESIGN AND MODELING

e« 200: OK
« 400: Bad request
« 500: Internal server error

If you're not comfortable reducing all your error conditions to these
three, try picking among these additional five:

201: Created

« 304: Not modified

404: Not found

« 401: Unauthorized
« 403: Forbidden

Check out this good Wikipedia entry for all HTTP status codes:
https://en.wikipedia.org/wiki/List of HTTP status codes.

Versioning
Never release an API without a version.

« Make the version mandatory.

« Specify the version with a “v” prefix. Move it all the way
to the left in the URL so that it has the highest scope
(e.g., /v1/dogs).

« Use a simple ordinal number. Don’t use the dot
notation like v1.2, because it implies a granularity of
versioning that doesn’t work well with APIs—it’s an
interface, not an implementation. Stick with v1, v2,
and so on.

« How many versions should you maintain? Maintain at
least one version back.

62

CHAPTER 4 API DESIGN AND MODELING

For how long should you maintain a version? Give
developers at least one cycle to react before obsoleting

a version.

There is a strong school of thought about putting
format (XML or JSON) and version in the header.
Simple rules we follow: If it changes the logic you write
to handle the response, put it in the URL so you can see
it easily. If it doesn’t change the logic for each response
(like OAuth information), put it in the header.

Partial Response

Partial response allows you to give developers just the information they
need. Take, for example, a request for a tweet on the Twitter API. You'll get
much more than a typical Twitter app often needs, including the name

of the person, the text of the tweet, a timestamp, how often the message
was retweeted, and a lot of metadata. Let’s look at how several leading
APIs handle giving developers just what they need in responses, including
Google, who pioneered the idea of partial response:

LinkedIn

/people: (id,first-name,last-name,industry)This request
on a person returns the ID, first name, last name, and
the industry

Facebook
/joe.smith/friends?fields=id,name,picture
Google

?fields=title,media

63

CHAPTER 4 API DESIGN AND MODELING

Google and Facebook have a similar approach, which works well. They
each have an optional parameter called “fields” after which you put the
names of fields you want to be returned. As you can see in this example,
you can also put subobjects in responses to pull in other information from
additional resources.

Pagination

Make it easy for developers to paginate objects in a database. Let’s look at
how Facebook, Twitter, and LinkedIn handle pagination. Facebook uses
offset and limit. Twitter uses page and rpp (records per page). LinkedIn
uses start and count semantically. Facebook and LinkedIn do the same
thing, that is, the LinkedIn start and count.

To get records 50 through 75 from each system, you would use the
following:

« Facebook: offset 50 and limit 2
« Twitter: page 3 and rpp 25 (records per page)
o LinkedIn: start 50 and count 25

Multiple Formats

We recommend that you support more than one format—that you push
things out in one format and accept as many formats as necessary. You
can usually automate the mapping from format to format. Here’s what the
syntax looks like for a few key APIs:

« Google Data: ?alt=json
« Foursquare: /venue.json

o LinkedIn: Accept: application/json

64

CHAPTER 4 API DESIGN AND MODELING

API Facade

Use the facade pattern when you want to provide a simple interface to a

complex subsystem. Subsystems often get more complex as they evolve.

Implementing an API facade pattern involves three basic steps:

1.

Design the ideal API—design the URLS, request
parameters and responses, headers, query
parameters, and so on. The API design should be
self-consistent. This means you give the developers
the information they need.

Implement the design with data stubs. This allows
application developers to use your API and give
you feedback even before your API is connected to
internal systems.

Mediate or integrate between the facade and the
systems.

API Solution Architecture

Developers and architects often think of APIs as a continuation of

the integration-based architectures that have long been in use within
enterprise IT. But this is a narrow view.

To understand the demands and requirements on APIs, let’s discuss
typical solutions that are enabled by APIs.
Figure 4-5 shows the API solution architecture.

65

CHAPTER 4 API DESIGN AND MODELING

D 0 i

Q y
/

* \\. / . ﬁ
Multi Channel Solution \\\ /7 smatsoution
i) . \ // i
Web Application T~ \\ | /f://-""'/ Intermet of Things

o HH\“_'_\ -
APl

ad

Backends

Figure 4-5. API solution architecture

API solutions typically consist of two components:
« Exposesthe API

— An exposed API resides on the server side, for exam-
ple, in the cloud or on premise.

« Consumes the API

— Web or mobile apps and embedded devices on IoT

Mobile Solutions

Mobile apps need to connect to the servers on the Internet to be usable

at all or at least to be usable to their full potential—some business logic
on the app and heavy-duty processing logic on servers in the cloud.
Functionality hosted on these servers can be reached by API calls. Data
captured on mobile devices is sent to servers by API calls, which hand the
data to services and then to databases. Data delivered by APIs needs to be

66

CHAPTER 4 API DESIGN AND MODELING

lightweight. This ensures APIs can be consumed by devices with limited
processing power. Typically, the mobile app provider provides the APIs for
the mobile app.

Cloud Solutions

SaasS cloud solutions typically consist of a web application and APIs.
The web application is visible for the consumers. Under the hood, cloud
solutions usually offer an API as well, for example, Dropbox, Salesforce,
Workday, and Oracle Cloud.

Web Solutions

Web applications display dynamic web pages based upon user requests;
web pages are created on the fly with data available from the back end. The
web application pulls raw data from the APIs, processes the data (JSON,
XML), and displays in HTML, for example, podcast or customer API.

Integration Solutions

APIs provide capabilities which are essential for connecting, extending,
and integrating software. By integrating software APIs, businesses can
connect with other businesses. The business of an enterprise can be
expanded by linking the business to a partner. Integration not only makes
sense externally but also internally for integrating internal systems.

Multichannel Solutions

Today, an ecommerce system offers customers shopping on multiple
platforms—mobile, web, and tablet. It is required to provide a seamless
experience when a consumer moves from one platform to another. This
can be accomplished by providing a common API, which supports a
multichannel maintaining state of user experience.

67

CHAPTER 4 API DESIGN AND MODELING

Smart TV Solutions

Smart TV offers not only TV channels, but provides interaction
capabilities. These are all implemented by API calls to the servers.

Internet of Things

The Internet of Things is made up of physical devices with an Internet
connection. The device connects to smart functions (e.g., sensors,
scanners, etc.) which are exposed on the Internet via APIs.

Stakeholders in API Solutions

In API solutions, stakeholders are API providers, API consumers, and end
users. We will discuss the roles of each here in this section.

API Providers

API providers develop, design, deploy, and manage APIs. API providers
define the API portfolio, road map, and product mode. It is the
responsibility of an API provider to decide which functionality is exposed
by the API. In the solution-driven approach, only those APIs are built
which are required by the consumer. In the top-down approach, API
providers provide APIs which are good from an internal perspective, for
example, from a reusability perspective.

API Consumers

Consumers need to know how to call an API and build an API client.
API providers should provide a demo app to consume their API for the

consumers.

68

CHAPTER 4 API DESIGN AND MODELING

End Users

End users do not call the API directly, but use the app developed by API

consumers.

APl Modeling
OpenAPI (Swagger)

A screenshot of MICRONAUT LAUNCH page. It has four headers:
application type, Java version, name, and base package.

This tutorial walks you through the steps for creating OpenAPI specs
using Swagger (Micronaut for a flight passenger API):

Change directory into project.

Create a model folder.

Create a controllers folder.

Create a service folder.

Create a Flight class in the model folder using editor of your choice.
Paste the following definition of the attributes of the Flight class and then
select pasted code and generate getter and setter methods.

Create a Passenger class in the model folder. Paste the passenger
attributes’ code and then generate getter and setter methods:

package com.rest.domain;

import io.swagger.v3.oas.annotations.media.Schema;
@Schema(description="Passenger")

public class Passenger {

private String id;

private String name;

public String getId() {

return id;

69

CHAPTER 4 API DESIGN AND MODELING

public void setId(String id) {
this.id = id;

}

public String getName() {

return name;

}

public void setName(String name) {
this.name = name;

Create a FlightService class in the service folder and paste the
following code. In this code, we are creating flightRepo for storing flights in
memory. Get methods will be implemented to fetch details of a flight and
list of all flights.

package com.rest.service;
import com.rest.domain.Flight;
import java.util.Map;
import java.util.Llist;
import java.util.Arraylist;
import java.util.HashMap;
import java.util.concurrent.atomic.AtomicInteger;
public class FlightService {
static private Map<Integer, Flight> flightRepo = new
HashMap<Integer, Flight>();
static private AtomicInteger idCounter = new AtomicInteger();
public Flight getFlight(String id) {
Flight flight = flightRepo.get(id);
return flight;

}
public List<Flight> getFlightsByPassenger(String passengerId)

{

70

CHAPTER 4 API DESIGN AND MODELING

return new Arraylist<Flight>(flightRepo.values());

}
}

Create a PassengerService class in the service and paste the
following code:

package com.rest.service;
import com.rest.domain.Passenger;
import java.util.Map;
import java.util.Llist;
import java.util.Arraylist;
import java.util.HashMap;
import java.util.concurrent.atomic.AtomicInteger;
public class PassengerService {
static private Map<Integer, Passenger> passengerRepo = new
HashMap<Integer, Passenger>();
static private AtomicInteger idCounter = new AtomicInteger();
public Passenger getPassenger(int id) {

Passenger passenger = passengerRepo.get(id);

return passenger;
}
public List<Passenger> getPassengers() {

return new Arraylist<Passenger>(passengerRepo.values());

}
}

Create a FlightController class in the controller and paste the
following code:

package com.rest.controller;
import com.rest.domain.Flight;
import com.rest.service.FlightService;

71

CHAPTER 4 API DESIGN AND MODELING

im
im
im
im
im
im
im
im
im
im
im
im
im
@C
pu

72

port io.micronaut.http.annotation.Get;
port io.micronaut.http.annotation.Controller;
port io.micronaut.http.HttpHeaders;
port io.micronaut.http.HttpResponse;
port io.micronaut.http.MediaType;
port io.micronaut.http.annotation.Produces;
port io.micronaut.http.annotation.Controller;
port io.micronaut.http.annotation.Delete;
port io.micronaut.http.annotation.Get;
port io.micronaut.http.annotation.Post;
port io.micronaut.http.annotation.Put;
port io.micronaut.http.annotation.Body;
port java.util.List;
ontroller("/flight") // <2>
blic class FlightController {
FlightService flightService;
public FlightController(FlightService flightService) { // <3>
this.flightService = flightService;
}
@Get("/{id}")
public Flight getFlight(String id) {
Flight flight = flightService.getFlight(id);
return flight;
}
@Get("/passenger/{id}")
public List<Flight> getFlightsByPassenger(String id) {
List<Flight> flights = flightService.
getFlightsByPassenger(id);
return flights;

CHAPTER 4 API DESIGN AND MODELING

Create a PassengerController class in the controller folder using VSC
and paste the following code:

package com.rest.controller;
import com.rest.domain.Passenger;
import com.rest.service.PassengerService;
import io.micronaut.http.annotation.Get;
import io.micronaut.http.annotation.Controller;
import io.micronaut.http.HttpHeaders;
import io.micronaut.http.HttpResponse;
import io.micronaut.http.MediaType;
import io.micronaut.http.annotation.Produces;
import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Delete;
import io.micronaut.http.annotation.Get;
import io.micronaut.http.annotation.Post;
import io.micronaut.http.annotation.Put;
import io.micronaut.http.annotation.Body;
import java.util.Llist;
@Controller("/passenger™) // <2>
public class PassengerController {
PassengerService passengerService;
public PassengerController(PassengerService passengerService)
{ /] <3
this.passengerService = passengerService;
}
@Get("/{id}")
public Passenger getPassenger (int id) {
Passenger passenger = passengerService.getPassenger(id);
return passenger;

}
@Get

73

CHAPTER 4 API DESIGN AND MODELING

public List<Passenger> getPassengers() {
List<Passenger> passengers = passengerService.
getPassengers();
return passengers;

To get started, add Micronaut’s OpenAPI to the annotation processor
scope of build configuration in the pom.xml file:

<path>
<groupId>io.micronaut.openapi</groupId>
<artifactId>micronaut-openapi</artifactId>
<version>${micronaut.version}</version>
</path>

For Swagger annotation, add the following to the pom.xml file:

<dependency>
<groupId>io.swagger.core.v3</groupld>
<artifactId>swagger-annotations</artifactId»
</dependency>

Once dependencies have been configured, the minimum requirement
is to add the following to the Application class:

import io.swagger.v3.oas.annotations.OpenAPIDefinition;
import io.swagger.v3.oas.annotations.info.Contact;
import io.swagger.v3.oas.annotations.info.Info;
import io.swagger.v3.oas.annotations.info.License;
@0penAPIDefinition(
info = @Info(
title = “Flight",
version = "0.1",

74

CHAPTER 4 API DESIGN AND MODELING

description = "Flight API",
license = @License(name = "Apache 2.0",
url = "https://foo.bar"),
contact = @Contact(url = "https://gigantic-
server.com", name = "Fred", email =
"Fred@gigagantic-server.com")
))
Compile application using command "mvn package".
cd target/classes/META-INF/swagger
Generated OpenAPI YAML in file flight-0.1.yml.

Once you have modeled API, you can generate a document which
could be shared with API consumers. Swagger allows to make API access
in the browser and more readable. Next, we will configure Swagger.

Configure the following in the application.yml file to enable Swagger.
You could find the application.yml file in the src/main/resources folder:

micronaut:
router:
static-resources:
swagger:
paths: classpath:META-INF/swagger

mapping: /swagger/**

With the preceding configuration in place, when you run your
application, you can access your Swagger documentation at http://
localhost:8080/swagger/flight-0.1.yml.

75

CHAPTER 4 API DESIGN AND MODELING

Summary

In this chapter, we started with API design strategies and then looked into
the API creation process and modeling. Best practices for REST API design
are discussed, followed by the API solution architecture. We compared
API modeling tools and then developed an API for flight passenger using
Micronaut.

76

CHAPTER 5

Introduction to
JAX-RS

This chapter introduces basic concepts about JAX-RS and its
implementation in Micronaut.

JAX-RS Introduction

Java API for RESTful web services (JAX-RS) is a Java programming
language API spec that provides support in creating web services
according to the REST architectural pattern. What exactly is JAX-RS?
JAX-RS is a POJO-based, annotation-driven framework for building web
services that comply with RESTful principles. Imagine writing all the
low-level code to parse an HTTP request and the logic just to wire these
requests to appropriate Java classes/methods. The beauty of the JAX-

RS APl is that it insulates developers from that complexity and allows
them to concentrate on business logic. That's precisely where the use of
POJOs and annotations come into play! JAX-RS has annotations to bind
specific URI patterns and HTTP operations to individual methods of your
Java class. JAX-RS is a collection of interfaces and Java annotations that
simplifies development of server-side REST applications. By using JAX-RS
technology, REST applications are easier to develop and easier to consume
when compared to other types of distributed systems. The following are
salient features provided by JAX-RS:

© Sanjay Patni 2025 77
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_5

CHAPTER 5

78

INTRODUCTION TO JAX-RS

POJO-based resource classes
HTTP-centric programming model
Entity format independence
Container independence

Included in Java EE

Is a standardized API for building and consuming
RESTful web services

Application: Specifies which Java classes service which
requests

Resources: Base Java code and annotations for
building RESTful services

Providers: Facilitates for marshaling and
un-marshaling of data (POJO Customer)

Client API: Base Java code and annotations for
building RESTful service clients

Filters and interceptors: Facilities for inserting
code to execute throughout the request-response
invocation chain

Validation: Provides annotation-based validation for

incoming data. For example:

@NotNull @FormParam (“firstname”) String firstname,
@NotNull @FormParam (“lastname”) String lastname,
@Email @FormParam (“email”) String email)

Asynchronous processing: Facilities for client- and
provider-side asynchronous requests for long-running
requests (@Suspended)

@Context: Provides client and provider
implementation classes with access to useful objects
from the runtime environment, for example, header

CHAPTER5 INTRODUCTION TO JAX-RS

Input and Output Content Type

The following are media types supported by JAX-RS. These should be used
in request and response annotations for contents produced or consumed
by a REST resource.

« APPLICATION_JSON: application/json

e APPLICATION_XML: application/xml (encoding
is used)

« TEXT HTML: text/html
« TEXT PLAIN: text/plain
« TEXT XML: text/xml

¢ The difference between application and text media
types is the internationalization. The application
supports encoding for internationalization.

Examples: @Produces(“application/json”),
@Consumes(“text/xml”)

JAX-RS Injection

Alot of JAX-RS involves pulling information from an HTTP request and
injecting it into a Java method. You may be interested in only a fragment of
the incoming URI. You might be interested in a URI query string value. The
client might be sending critical HTTP headers or cookie values that your
service needs to process the request. JAX-RS lets you grab this information
as you need it through a set of injection annotations and APIs.

79

CHAPTER5 INTRODUCTION TO JAX-RS

There are a lot of different things JAX-RS annotations can inject. Here
is a list of those provided by the specification:

« You need to use the Path annotation in JAX-RS to define
a URI matching pattern for incoming HTTP requests.
You can place it on a class or on one or more methods.
If you want a class to receive HTTP requests, you must
annotate it with at least @Path(“/”). This annotated
class is then called a JAX-RS root resource.

« To use the @Path annotation, you provide a URI
expression that is relative to the context root of your
JAX-RS application.

@javax.ws.rs.Path

« PathParam allows you to extract values from URI
template parameters.

@javax.ws.rs.PathParam

QueryParam allows you to extract values from URI
query parameters.

@javax.ws.rs.QueryParam

« FormParam allows you to extract values from posted
form data.

@javax.ws.rs.FormParam

HeaderParam allows you to extract values from
HTTP request headers.

@javax.ws.rs.HeaderParam

CookieParam allows you to extract values from
HTTP cookies set by the client.

@javax.ws.rs.CookieParam

80

CHAPTER5 INTRODUCTION TO JAX-RS

s MatrixParam allows you to extract values from URI

maftrix parameters.
@javax.ws.rs.MatrixParam

The Context class is the all-purpose injection
annotation. It allows you to inject various helper
and informational objects that are provided by the
JAX-RS APL

@javax.ws.rs.core.Context

The following are a few examples of JAX-RS injections.

Path Parameter

One parameter:

@Path("/customers/{id}")
public String getCustomer(@PathParam("id") int id);

Multiple parameters:

@Path("/products/{name}-{version}")
public String getProduct(@PathParam("name) String name,
@PathParam("version") String version)

Query Parameter

Requesting subset by qualifying with query parameter:

http://restapi/products?start=0&count=10

@GET

@Produces("application/json")

public String getProducts(@QueryParam("start") int start,

81

CHAPTER5 INTRODUCTION TO JAX-RS

@QueryParam("count") int count);
public String getProducts(@Context Uriinfo info)
String info.getQueryParameters().getFirst("start");

Cookie Parameter

Use @CookieParam to retrieve individual value:

public string get(@CookieParm("userId" String userId)

Header Parameter

Used for injecting HTTP header values:

public String get(@HeaderParam("Accept") String accept)

Form Parameter

@FormParam is used to retrieve information from the request body
of HTML:

@Path("/product™)

@POST

createProduct(@FormParm("name") String, productName,
@FormParm("description™) String description,..

Matrix Parameter

Matrix parameters are used to qualify individual path segments, not the
complete URI:

82

CHAPTER5 INTRODUCTION TO JAX-RS

Response getBooks(@PathParam("year") String year,
@MatrixParam("author") String author, @MatrixParam("country")
String country) {

Consider the following request that is asking for all the books
published in year 2016 by author bill in country usa.
"/books/2016;author=bill;country=usa"

getBooks is called with year set to 2016, author set to bill,
and country set to usa.

Micronaut Implementation of JAX-RS

By default, Micronaut users define their HTTP Routing using the
Micronaut @Controller annotation and other built-in Routing
Annotations. However, Micronaut JAX-RS allows you to define your
Micronaut endpoints with JAX-RS annotations. Micronaut JAX-RS adds
support for using JAX-RS annotations and types in a Micronaut application
with the aim of helping migrate existing JAX-RS applications or support
teams who prefer the JAX-RS annotations.

This project is not an implementation of the JAX-RS specification and
is designed to allow users familiar with the JAX-RS API to use the most
common parts of the API within the context of a Micronaut application.

To use this project, you add the following annotation processor to any

Micronaut project:

<annotationProcessorPaths>
<path>
<groupId>io.micronaut.jaxrs</groupId>
<artifactId>micronaut-jaxrs-processor</artifactId>
</path>
</annotationProcessorPaths>

83

CHAPTER5 INTRODUCTION TO JAX-RS

Micronaut JAX-RS supports using JAX-RS annotations to define
controllers.
Include the following server dependency:

<dependency>
<groupId>io.micronaut.jaxrs</groupId>
<artifactId>micronaut-jaxrs-server</artifactId»
</dependency>

Supported Annotations

Micronaut JAX-RS works by converting (at compilation time) a JAX-RS
annotation definition into the equivalent Micronaut version.

Table 5-1. Supported JAX-RS annotations

JAX-RS Target annotation Example

annotation

@Path @Controller @Path("/foo™) // on type

@Path @UriMapping @Path("/foo™) // on method

@HttpMethod = @HttpMethodMapping @HttpMethod ("TRACE")

@GET @Get @GET @Path("/foo/bar™)

@POST @Post @POST @Path("/foo/bar™)

@DELETE @Delete @DELETE @Path("/foo/
bar™)

@OPTIONS @Options @OPTIONS @Path("/foo/
bar")

@HEAD @Head @HEAD @Path("/foo/bar")

@Consumes @Consumes @Consumes ("application/

json")

84

(continued)

CHAPTER5 INTRODUCTION TO JAX-RS

Table 5-1. (continued)

JAX-RS Target annotation Example

annotation

@Produces @Produces @Produces("application/
json")

@PathParam @PathVariable @PathParam("foo")

@CookieParam @CookieValue @CookieParam("myCookie™)

@HeaderParam @Header @HeaderParam("Content-
Type")

@QueryParam @QueryValue @QueryParam("myParam")

@DefaultValue @Bindable(defaultValue="..") @DefaultValue("example")

@Context No equivalent. Injects a bean @Context
into a parameter

Injectable Parameter Types

In addition to the supported JAX-RS annotations, you can use the following
JAX-RS types as parameter types to resources or client definitions:

e jakarta.ws.rs.core.HttpHeaders

o jakarta.ws.rs.core.CacheControl

e jakarta.ws.rs.core.Cookie

o jakarta.ws.rs.core.EntityTag

e jakarta.ws.rs.core.Link

o jakarta.ws.rs.core.MediaType

o jakarta.ws.rs.core.SecurityContext

You can also use the @Context annotation to inject any bean into a
resource type’s method parameter.

85

CHAPTER5 INTRODUCTION TO JAX-RS

SecurityContext and Micronaut Security

When injecting the SecurityContext by default, the injected instance is
not aware of Micronaut Security and methods like isUserInRole always
return false.

To integrate the JAX-RS support with Micronaut Security, add the
following dependency:

<dependency>
<groupId>io.micronaut.jaxrs</groupId>
<artifactId>micronaut-jaxrs-server-security</artifactId>
</dependency>

With the above dependency in place, the SecurityContext.isUserInRole
method will return true if the role is found within Micronaut Security’s
Authentication.getRoles() method. See Retrieving the authenticated user
for more information.

Summary

We reviewed JAX-RS, a POJO-based, annotation-driven framework
for building web services that comply with RESTful principles and its
implementation in Micronaut.

86

CHAPTER 6

API Portfolio and
Framework

This chapter starts with the API portfolio architecture and then gets into
the framework for API development. An overview of the API framework
starting from the client to data is discussed, and then, the focus is shifted to
review the services layer with an exercise implementing the services layer.

API Portfolio Architecture

Usually, an organization does not have one API but several APIs. All the
APIs in the portfolio need to be consistent with each other, reusable,
discoverable, and customizable.

Requirements

API portfolio design is a concern for different API stakeholders. Both API
consumers and producers have significant advantages over a properly
designed API portfolio, and both parties formulate requirements for an API
portfolio regarding consistency, reuse, customization, discoverability, and
longevity.

© Sanjay Patni 2025 87
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_6

CHAPTER6 API PORTFOLIO AND FRAMEWORK

Consistency

An API solution, such as a mobile app, may use several APIs from the
portfolio, and the output of one API is the input of another. So consistency
is required about data structures, representations, URISs, error messages,
and behavior of the APIs. API consumers find it easier to work with if it

behaves similar to the last one and delivers similar error messages.

Reuse

A consistent portfolio consists of many commonalities among the APIs.
These commonalities can be factored out, shared, and reused. Reuse leads
to a speedup in the development. By reusing common elements, the wheel
is not reinvented each time an API is built. Instead, a common library of
patterns and know-how is shared and reused. Reuse can be realized in
several ways:

« Reuse of an API by several apps
« Reuse of an API by multiple APIs
« Reuse of parts of an API

APIs should not be developed for a specific consumer. APIs should
always be used by several consumers, solutions, or projects.

Customization

There might be consumers who might have specific requirements from
the APISs, if the consumers of APIs are not a homogenous group. In such
a scenario, customizations are required to the APIs to meet a consumer’s
individual needs. This contradicts with reuse requirements, but both can
be realized at the same time.

88

CHAPTER6 API PORTFOLIO AND FRAMEWORK

Discoverability

To expand the usage of APIs, it should be easy for the API consumer to find
and discover all APIs in an API portfolio. An API portfolio design needs to
ensure that APIs can be found and all the information necessary for proper
usage is available.

Longevity

This means that important aspects of the API do not change and stay
stable for a long time. What needs to be stable is the signature of the API,
the client-facing interface. A change in signature will break the apps built
by the API consumer. For example, with IoT on “h/w devices,” it is not easy
to change.

How Do We Enforce These Requirements—
Governance?

An APl initiative is often regarded as an innovation lab of an enterprise.
Imposing governance can contradict innovation. So to manage these
conflicting requirements, an API portfolio may be split in two portfolios.
One portfolio is dedicated to innovation and experiment. This portfolio
requires lightweight governance processes. Another portfolio is dedicated
to stable, productive APIs, which are offered to external API consumers.

Consistency

Each enterprise may implement its own set of consistency rules. When
consistency rules are defined, consistency checks can be realized as
manual or automated. Lightweight consistency checks can be realized
by manual quality checks or review by a colleague. A complementary
approach is by automated code generation based upon API description.

89

CHAPTER6 API PORTFOLIO AND FRAMEWORK

Reuse

There are two types of building blocks that are offered by an API Platform
like security, logging, and error handler. Any other functional commonality
or reusable solution pattern can be realized as a composition of building
blocks. You could have your “own” API or third-party APIs. Third-party
APIs could be integrated in an API Platform by creating an API Proxy on its
“own” platform. This helps the consumer with homogenous security. API
Proxy and API Platform architectures are discussed in the next chapter.

Customization

An API consumer is interested in data formatting and data delivery. Data
gathering is, however, no concern to the API consumer. So these could

be separated into two parts: one API we call “utility API” covers the data
gathering; the other API, which delivers data and formats to the consumer
requirements, is called “consumer API.” Utility APIs cannot be called
directly by a consumer; only consumer APIs can call these.

Discoverability

This could be manual or automated. Manual: Discover by API catalog or
yellow pages. Automated: SOAP based through UDDI and WSDL. REST:
Limited with the OPTIONS verb of HTTP.

Change Management

From an innovation or business perspective, there are forces to publish
APIs as early as possible. From an IT governance perspective, APIs are
published as late as possible. In a compromise solution, APIs are published
early but only to pilot consumers, with the expectation that there will be
changes, and APIs will break the app. Changes are classified into three

90

CHAPTER6 API PORTFOLIO AND FRAMEWORK

groups: backward compatible, forward compatible, and not compatible.
Backward compatibility is given if the old client can interact with the new
API (adding query, header, or form parameter as long as they are optional;
adding new fields in JSON or XML as long as they are optional; adding
endpoint, e.g., new REST resource; adding new operations to existing
endpoints, e.g., in SOAP; adding optional fields to request interface;
changing mandatory fields to optional fields in an existing API). Forward
compatibility is given if a new client can interact with an old API. It's hard
to achieve, and generally, it is nice to have it.

¢« Incompatible changes: If a change in the API breaks
the client, the change was incompatible.

« Removing: Renaming fields in data structures or
parameters in a request or response.

¢ Changing URI: For example, hostname and port.

e Changing data structure: Making a field the child of
some other. Adding a new mandatory field in a data
structure.

APl Framework

As we have discussed, there are multiple solutions to an API, for example,
web applications, mobile applications, etc. Each of these solutions talks
to an APIwhich is implemented through a multilayered architecture
using design patterns. A design pattern is a general reusable solution to a
commonly occurring problem within a given context in software design.
A design pattern is not a finished design that can be transformed directly
into source or machine code.

91

CHAPTER6 API PORTFOLIO AND FRAMEWORK

The multilayered framework is shown in Figure 6-1.

1 0h5 305 0

Experience APls

(Adaptations of Process and System APIs to deliver tailored Microservice to apps)

Process APIs
(Composition of System APis through Orchestration and Choreography)

System APls
(Microservice that encapsulate Core Business Capabilities)

Figure 6-1. API multilayered framework

A framework depicts the types of API and their components. App
development has experienced API. LoB dev and IT have process
API. Central IT has system API. The accessibility and ownership have SaaS
apps, mainframe, FTP files, databases, web services, legacy systems, and
applications.

« Process APIs implemented by a services design pattern

« System APIs implemented by a data access object
design pattern

« Experience APIs implemented by an API facade layer
design pattern

Each layer is implemented using software engineering design patterns.

92

CHAPTER6 API PORTFOLIO AND FRAMEWORK

Process APIs: Services Layer

The services layer implements the business logic of the application: the
reusable logic, process-specific logic, and the logic that interfaces with
system APIs through orchestration and choreography. Orchestration
(direct calls) in this sense is about aligning the line of business dev/IT
request with the applications, data, and infrastructure. Choreography, in
contrast, does not rely on a central coordinator. Rather, each API involved
in the choreography knows exactly when to execute its operations and with

whom to interact.

System APIs: Data Access Object

These system APIs or system-level services are in line with the concept of
an autonomous service which has been designed with enough abstraction
to hide the underlying systems of record, for example, databases, legacy
systems, and SaaS$ applications.

Typically, a data access object (DAO) is an object that provides
an abstract interface to some type of database or other persistence
mechanism. By mapping application calls to the persistence layer, DAO
provides some specific data operations without exposing details of

the system.

Experience APIs: API Facade

Both process and system APIs should be tailored and exposed to suit

the needs of each business channel and digital touchpoint of solution
architectures. The adaption is shaped by the desired digital experience and
is what we call the experience API. This is implemented by API facade. The
goal of an API facade pattern is to articulate internal systems and make
them useful for the app developer providing a good APX (API experience).

93

CHAPTER6 API PORTFOLIO AND FRAMEWORK

Services Layer Implementation

The services layer implements the business logic of the application: the
reusable logic, process-specific logic, and logic that interfaces with the
legacy system. In the implementation of the services layer, a design pattern
dependency injection is used. The general concept between dependency
injections is called inversion of control. A class A has a dependency to class
B if class A uses class B as a variable. If dependency injection is used, then
the class B is given to class A via the constructor of the class A. This is then
called “construction injection.” If a setter is used, this is then called “setter
injection.”

A class should not configure itself but should be configured from
outside. A design based on independent classes/components increases
the reusability. A software design based on dependency injection is
possible with standard Java. The Micronaut framework, which is used for
the implementation in the exercises, just simplifies the use of dependency
injection by providing a standard way of providing the configuration
and by managing the reference to the created objects. The fundamental
functionality provided by the Micronaut is dependency injection.
Micronaut provides a lightweight container for dependency injection (DI).
This container lets you inject required objects into other objects. This
results in a design in which the Java classes are not hard-coupled.

FRAMEWORK: SERVICES

In the previous chapter, we implemented a flight passenger API for READ
operations. This exercise uses a message domain object to implement CRUD
(create, read, update, and delete) operations. The message domain object
structure is pretty simple. There is an id, which identifies a message, and
several other fields that we can see in the following JSON representation:

94

CHAPTER6 API PORTFOLIO AND FRAMEWORK

{ "id":1,
"message” : "Welcome",
"from":"James",

"to":"John",
"creationDate":1388213547000

}

Add the following to pom.xml:

<dependency>
<groupId>javax.inject</groupIld>
<artifactId>javax.inject</artifactId>
<version»1</version>

</dependency>

Here is a POJO defining properties of the message:

package com.rest.model;

public class Message {

private int id;

private String message;

private String from;

private String to;

private String creationDate;

public String getMessage() {
return message;

}

public void setMessage(String message) {

this.message = message;

}
public String getFrom() {

95

CHAPTER6 API PORTFOLIO AND FRAMEWORK

96

return from;

}
public void setFrom(String from) {

this.from = from;

}

public String getTo() {
return to;

}

public void setTo(String to) {
this.to = to;
}
public String getCreationDate() {
return creationDate;

}

public void setCreationDate(String creationDate) {
this.creationDate = creationDate;

}

public int getId() {
return id,;

}

public void setId(int id) {
this.id = id;
}
}

MessageController

In the message controller, we have CRUD operations for the message:

package com.rest.controller;

import com.rest.model.Message;

import com.rest.service.MessageService;
import io.micronaut.http.annotation.Get;

import
import
import
import
import
import
import
import
import
import
import

io.
io.
io.
io.
io.
io.
io.
io.
io.
io.
io.

micronaut.

micronaut
micronaut
micronaut

micronaut.
micronaut.
micronaut.
micronaut.
micronaut.

micronaut
micronaut

http.
.http.
.http.
.http.
http.
http.
http.
http.
http.
.http.
.http.

import java.util.Llist;
@Controller("/message") // <2>
public class MessageController {

MessageService messageService;

public MessageController(MessageService messageService)

{ /] <3

this.messageService = messageService;

}

CHAPTER6 API PORTFOLIO AND FRAMEWORK

annotation.Controller;
HttpHeaders;
HttpResponse;
MediaType;
annotation.Produces;
annotation.Controller;
annotation.Delete;
annotation.Get;
annotation.Post;
annotation.Put;
annotation.Body;

@Produces(MediaType.TEXT XML)

@Get (" /xml")
public HttpResponse<?> messageXml() {

Message message

message.setMessage("Hello from Micronaut");

final String xml = encodeAsXml(message);

return HttpResponse.ok(xml).contentType(MediaType.

APPLICATION XML TYPE);

}

= new Message();

@Produces(MediaType.TEXT JSON)
@Get("/json™)

public Message messageJson() {
Message message

= new Message();

97

CHAPTER6 API PORTFOLIO AND FRAMEWORK

message.setMessage("Hello from Micronaut");
return message;
¥
private String encodeAsXml(final Message message) {
return String.format("<message>%s</message>",
message.getMessage());
}
@Post
public Message createMessage(@Body Message message) {
messageService.createMessage(message);
return message;
}
@Get("/{id}")
public Message getMessage (int id) {
Message message = messageService.getMessage(id);
return message;
}
@Get
public List<Message> getMessages() {
List<Message> messages = messageService.getMessages();
return messages;
}
@Put("/{id}")
public void updateMessage (int id, @Body Message update) {
messageService.updateMessage(id, update);
}
@elete("/{id}")
public void deleteMessage(int id) {
messageService.deleteMessage(id);

98

CHAPTER6 API PORTFOLIO AND FRAMEWORK

MessageService

All the methods for CRUD (create, read, update, and delete) operations which
have operations in memory of messages are moved here:

package com.rest.service;

import com.rest.model.Message;

import java.util.Map;

import java.util.Llist;

import java.util.Arraylist;

import java.util.HashMap;

import java.util.concurrent.atomic.AtomicInteger;

Import javax.inject.Singleton;

@Singleton

public class MessageService {

static private Map<Integer, Message> messageRepo = new

HashMap<Integer, Message>();

static private AtomicInteger idCounter = new AtomicInteger();

public Message getMessage(int id) {
Message message = messageRepo.get(id);
return message;

}

// add message

public void createMessage(Message message) {
message.setId(idCounter.incrementAndGet());
messageRepo.put(message.getId(), message);

}

// update message

public void updateMessage(int id, Message update) {
Message current = messageRepo.get(id);
current.setMessage(update.getMessage());
current.setFrom(update.getFrom());

99

CHAPTER6 API PORTFOLIO AND FRAMEWORK

current.setTo(update.getTo());
current.setCreationDate(update.getCreationDate());
messageRepo.put(current.getId(), current);

}

// Delete message

public void deleteMessage(int id) {
Message current = messageRepo.remove(id);

}

public List<Message> getMessages() {

return new Arraylist<Message>(messageRepo.values());

}
API Tests(Curl

curl -d '{ "id":1, "message":"test", "from":"test",
"to":"test", "creationDate":"12/12//2012" }' -H 'Content-
Type: application/json' http://localhost:8080/message

"id":1,"message":"test","from":"test","to": "test",
"creationDate":"12/12//2012"}
curl -d '{ "id":2, "message":"test2", "from":"test",
"to":"test", "creationDate":"12/12//2012" }' -H 'Content-
Type: application/json' http://localhost:8080/message
{"id":2,"message": "test2","from":"test","to":"test",
"creationDate":"12/12//2012"}

curl http://localhost:8080/message
[{"id":1,"message":"test","from":"test","to":"test",
"creationDate":"12/12//2012"},{"id":2, "message": "test2",
"from":"test","to":"test", "creationDate":"12/12//2012}
curl http://localhost:8080/message/1

"id":1,"message":"test","from":"test","to": "test",
"creationDate":"12/12//2012"}

curl http://localhost:8080/message/2

100

CHAPTER6 API PORTFOLIO AND FRAMEWORK

{"id":2,"message": "test2","from":"test","to": "test",
"creationDate":"12/12//2012"}
curl -X "DELETE" http://localhost:8080/message/2
curl http://localhost:8080/message/2
{"message":"Not Found"," links":{"self":{"href":"/message/2",
"templated":false}}," embedded":{"errors":[{"message":"Page
Not Found"}]}}

curl http://localhost:8080/message

[{"id":1,"message":"test","from":"test","to":"test",
"creationDate":"12/12//2012"}]

Summary

Now, we have two APIs in our portfolio: one is for the messaging and

the other for flight passengers. The flight status API implements the
relationship of two objects Flight and Passenger, whereas the message
service allows the creation and deletion of messages in addition to read. It
is important to follow the same design for both the APIs.

101

CHAPTER 7

API Platform and Data
Handler

This chapter starts with API Platform architecture and then gets into the
data handler pattern for the integration of RESTful APIs with actual data

sources within an enterprise to make it more meaningful to the consumers
through APIs.

API Platform Architecture

API Platforms are used by API providers to realize APIs efficiently. We will
review the following:

Why do we need an API Platform?
What is an API Platform?
Which capabilities does an API Platform have?

How is an API Platform organized? What is the
architecture of the API Platform?

How does the API architecture fit in the surrounding
technical architecture of an enterprise?

© Sanjay Patni 2025 103
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_7

CHAPTER7 API PLATFORM AND DATA HANDLER

Why Do We Need an API Platform?

It is certainly technically feasible to build APIs without any platform or
framework. But why would you? For a moment, let’s think about databases,
which provide a platform for building applications. You could certainly
build your application without a database and write your own data storage
library. But we typically do not do that. We use an existing database as

a platform. And this is the best practice for good reasons. It allows us to
focus on building an application that serves the business case, because we
can reuse existing, proven components and build the application quicker.
The same augmentation applies to API Platforms: API Platforms allow us
to focus on building APIs that consumers love, since we can reuse existing,
proven API building blocks and build APIs quicker.

So What Is an API Platform?

An API Platform consists of one of the following three components:
« APIdevelopment platform
— It offers tools to design and develop APIs quicker.

— It offers building blocks, which are proven, reusable, and

configurable.
« APIruntime platform
— This primarily executes APIs.

— Itserves API responses for incoming API requests of the
consumers with nonfunctional properties like high through-

put and low latency.

104

CHAPTER7 API PLATFORM AND DATA HANDLER

« API engagement platform

— This platform allows API providers to manage their interaction
with API consumers. It offers API documentation, credentials,

and rate plans for the consumers.

So Which Capabilities Does the API
Platform Have?

The following are the capabilities offered by the three components of the
API Platform.

API Development Platform

The API development platform offers a toolbox for API design and
development targeted for API developers who work for API providers. The
toolbox contains API building blocks, which are proven, reusable, and
configurable. When building APIs, certain functionality is needed over and
over again. This can be accomplished by building blocks. Building blocks
can be reused. Building blocks are tested so bugs are not there, and these
are configurable so they can be adopted for many purposes. The building
blocks offered by the API development platform span the following
features at the minimum:

¢ Processing of HTTP requests and responses
* Header

« Query

e« HTTP: Status code

« Methods

105

CHAPTER7 API PLATFORM AND DATA HANDLER

106

Security: IP-based access limitation, location-based
access limitation, time-based access limitation, front-
end authentication and authorization, OAuth, basic
authorization, API key, back-end authentication, and
authorization (with LDAP and SAML)

Front-end protocols: HTTP (REST), SOAP,
RPC, and RMI

Data format transformation: XML to JSON and
JSON to XML

Structural transformation: XLST and XPATH
Data integrity and protection: Encryption
Routing to one or more back ends

Aggregation of multiple APIs and/or multiple
back ends

Throttling to protect back-end rate limitation and
throughput limitation

Load balancing for incoming requests to the API
Platform and outgoing requests to the back ends

Hooks for logging
Hooks for analytics
Monetization capabilities

Language for implementing APIs: Java, JavaScript, etc.
(Jersey, Restlet, and Spring)

IDE for API development with editor, debugger, and
deployment tools: Eclipse, JDeveloper, and NetBeans

Language for designing APIs: YAML, RAML, etc.

CHAPTER7 API PLATFORM AND DATA HANDLER

Design tools for creating API interface designs:
RAML, Swagger, and Blueprint

Tools for generating documentation and API code
skeletons based upon design: RAML and Swagger

API Runtime Platform

The API runtime platform primarily executes APIs. It enables the APIs to

accept incoming requests from API consumers and serve responses.

It should deliver nonfunctional properties like
— High availability, high security, and high throughput
— To meet these properties, the platform offers

« Load balancing

« Connection pooling

e« Caching

It should also offer capabilities for monitoring of APIs,
logging, and analytics to check desired nonfunctional
properties are met.

APl Engagement Platform

The API engagement platform is used by API providers to interact with its

community of API consumers. API providers use the following capabilities

of the API engagement platform:

API management: Configuration and reconfiguration
of APIs without the need for deployment

107

CHAPTER7 API PLATFORM AND DATA HANDLER

« APl discovery: A mechanism for clients to obtain
information about APIs

« Consumer onboarding: App key generation and
API Console

« Community management: Blogs

¢« Documentation

+ Version management

« Management of monetization and service-level SLAs

API consumers use the engagement platform for

Overview of an API portfolio

« Documentation of APIs

Possibility of trying APIs interactively

Example source code for integration
— Self-service to get access to APIs

— Client tooling, such as code generation for clients

How Is an API Platform Organized? What Is
the Architecture of the API Platform?

Usually, APIs are not only deployed on the production system, but need to
be deployed on different stages of increasing maturity. The stages are also
sometimes called environments. Each of the stages has a specific purpose
and is separated from the other stages to isolate potential errors:

108

CHAPTER7 API PLATFORM AND DATA HANDLER

¢ Simulation: Used for playing with interface design,
provides mocks or simulation of an API

¢« Development: Used for development, which will

eventually go to production

¢ Testing: Used for manual black box testing and
integration testing

¢ Preproduction: Used as a practice for production and
for acceptance testing

e Production: Used as a real system for consumers

As shown in Figure 7-1, the API development platform is used
for design and development. The API runtime platform is used for
deployment. The API engagement platform is used for publishing the API.

API Platform
R Q) 15
API Development Platform API Runtime Platform AP1 Engagement Platform

Figure 7-1. API Platform architecture

A flow diagram illustrates how the API platform works. The first step
is to develop on the API development platform. The second step is to
deploy on the API runtime platform. The last step is to publish on the API

engagement platform.

109

CHAPTER7 API PLATFORM AND DATA HANDLER

How Does the API Architecture Fit
in the Surrounding Technical Architecture
of an Enterprise?

An API Platform is not isolated, but it needs to be integrated in existing
architecture in the enterprise. Firewall is used to improve security. Load
balancers are used to improve performance and are usually placed
between the Internet and the API Platform. IAM (Identity and Access
Management) systems are for managing identity information and LDAP or

Active Directory as shown in Figure 7-2.

110

AP1 Development Platform

IAM Systems

CHAPTER7 API PLATFORM AND DATA HANDLER

Do

AP Clients

Firewalls

L]

g

Load Balancers

API Platform

O

API Runtime Platform

123

Enterprise Service Bus

Legacy System

Figure 7-2. API architecture in an enterprise

i,
-‘-

AP1 Engagement Platform

Databases

D

Cloud Service

Back ends

A process diagram of the API implementation in an enterprise. It

begins with API clients, firewalls, load balancers, and API platform which
has three stages. The final process is the back ends which consists of
databases, enterprise service bus, legacy system, and cloud service.

Back-end systems for providing the core functionality of the enterprise:

Back ends may be databases, applications, enterprise service buses, web
services using SOAP, message queues, and REST services.

111

CHAPTER7 API PLATFORM AND DATA HANDLER

Data Handler

As mentioned in the previous section, we use an existing database as a
platform. A data handler, a data access object (DAO), and a command
query responsibility segregation (CQRS) all provide an abstract interface
to some type of database or any other persistence mechanism. A data
handler is a layer which handles data in the framework. A data access
object is a design pattern used to implement the access from the database
inside the data handler. The CQRS pattern, on the other hand, provides a
mechanism to segment query and transactional data in the data handler.

Data Access Object

By mapping application calls to the persistence layer, a DAO provides
some specific data operations without exposing details of the database.
The advantage of using data access objects is the relative simplicity, and
it provides separation between two important parts of an application
that can but should not know anything about each other and which can
be expected to evolve frequently and independently. Changing business
logic can rely on the same DAO interface, while changes to persistence
logic do not affect DAO clients as long as the interface remains correctly
implemented. All details of storage are hidden from the rest of the
application (see information hiding). Thus, possible changes to the
persistence mechanism can be implemented by just modifying one DAO
implementation while the rest of the application isn’t affected. DAOs act
as an intermediary between the application and the database. DAOs move
data back and forth between objects and database records.

For accessing databases, there are different APIs available (e.g., JPA,
which will be used in the class lab).

112

CHAPTER7 API PLATFORM AND DATA HANDLER

Command Query Responsibility
Segregation (CQRS)

New demands are being put on IT organizations every day to deliver
agile, high-performance integrated mobile and web applications. In the
meantime, the technology landscape is getting complex every day with
the advent of new technologies like REST, NoSQL, and the cloud, while
existing technologies like SOAP and SQL still rule everyday work. Rather
than taking a religious side of the debate, NoSQL can successfully coexist
with SQL in this “polyglot” of data storage and formats. However, this
integration also adds another layer of complexity both in architecture and
implementation. We will talk about the following.

SQL Development Process

The application development life cycle means changes to the database
schema first, followed by the bindings, then internal schema mapping, and
finally the SOAP or JSON services, and eventually the client code. This all
costs the project time and money. It also means that the “code” (pick your
language here) and the business logic would also need to be modified to
handle the changes to the model. Figure 7-3 shows the traditional CRUD
architecture.

113

CHAPTER7 API PLATFORM AND DATA HANDLER

Validation
Business logic
Updates
Data ———————————— Data
access “+«— store
Queries

Figure 7-3. Traditional CRUD architecture

An illustration of the CRUD architecture has a presentation that
consists of validation, business logic, and data access. Data access updates
to the data store, and data store queries back to data access.

NoSQL Process

NoSQL is gaining supporters among many SQL shops for various reasons,
including low cost, the ability to handle unstructured data, scalability,
and performance. The first thing database folks notice is that there is no
schema. These document-style storage engines can handle huge volumes
of structured, semistructured, and unstructured data. The very nature of
schemaless documents allows change to a document structure without
having to go through the formal change management process (or data
architect).

Do | Have to Choose Between SQL
and NoSQL?

The bottom line is both have their place and are suited for certain types of
data—SQL for structured data and NoSQL for unstructured data. NoSQL

114

CHAPTER7 API PLATFORM AND DATA HANDLER

databases are more scalable than SQL databases. So why not have the
capability to mix and match this data depending on the application? This
can be done by creating a single REST API across both SQL and NoSQL
databases.

Why a Single REST API?

The answer is simple—the new agile and mobile world demands this
“mash-up” of data into a document-style JSON response.

Martin Fowler described the pattern called “CQRS” that is more
relevant today in a “polyglot” of servers, data, services, and connections

(Figure 7-4).

Validation
Commands Queries
\db’ ey o (0ENErate
Domain logic Read model DTOs)

N
Data persistence @~ —>» f
Write model

Data store

Figure 7-4. Basic CQRS architecture

An illustration of the CQRS architecture has a presentation that
consists of validation, commands, domain logic, and data persistence.
Data persistence writes into the data store. On reading the data store, it
goes to queries, which generate DTO.

115

CHAPTER7 API PLATFORM AND DATA HANDLER

In this design pattern, the REST API requests (GET) return documents
from multiple sources (e.g., mash-ups). In the update process, the data is
subject to business logic derivations, validations, event processing, and
database transactions. This data may then be pushed back into the NoSQL
using asynchronous events. The advantage of NoSQL databases over SQL
for this purpose is that NoSQL has dynamic schema for unstructured
data. Also, NoSQL databases are horizontally scalable, which means
NoSQL databases are scaled by increasing the database servers in the
pool of resources to reduce the load, whereas SQL databases are scaled
by increasing horsepower of the server where the database is hosted.
Figure 7-5 shows the CQRS architecture with separate read and write
stores. When you have a requirement of very, very large data volumes, you
would choose separate stores.

Validation
P e Queries
c I . 21 . . (generate
® | ‘ DT0s)
Domain logic B 4 oo
Write data Read data
Data persistence _store J __ store J

Figure 7-5. CQRS architecture with separate read and write stores

Anillustration of the CQRS architecture has a presentation that
consists of validation, commands, domain logic, and data persistence.
Data persistence writes into the data store. On reading the data store, it
goes to queries, which generate DTO.

116

CHAPTER7 API PLATFORM AND DATA HANDLER

FRAMEWORK: DATA HANDLER

This exercise will implement a data handler or data access object for the quote
domain object using the Java Persistence API (JPA). JPA is a Java specification
for accessing, persisting, and managing data between Java objects/classes
and a relational database. We will use our domain object message and
implement CRUD operations using JPA in DAO.

Update pom.xml with the following dependencies:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns:="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.
org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.rest</groupld>
<artifactId>quote</artifactId>
<version»0.1</version>
<packaging>${packaging}</packaging>
<parent>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-parent</artifactId>
<version>3.4.3</version>
</parent>
<properties>
<packaging>jar</packaging>
<jdk.version>11</jdk.version>
<micronaut.version>3.4.3</micronaut.version>
<micronaut.data.version>3.3.0¢</micronaut.data.version>

117

CHAPTER7 API PLATFORM AND DATA HANDLER

<exec.mainClass>com.rest.Application</exec.mainClass>
<micronaut.runtime>netty</micronaut.runtime>
</properties>
<repositories>
<repository»
<id>central</id>
<url>https://repo.maven.apache.org/maven2</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>io.micronaut</groupld>
<artifactId>micronaut-inject</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>io.micronaut</groupld>
<artifactId>micronaut-validation</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupld>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId»
<scope>test</scope>
</dependency>
<dependency>

118

CHAPTER7 API PLATFORM AND DATA HANDLER

<groupId>io.micronaut.test</groupId>
<artifactId>micronaut-test-junits5</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-http-client</artifactId»
<scope>compile</scope>

</dependency>

<dependency>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-http-server-netty</artifactId>
<scope>compile</scope>

</dependency>

<dependency>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-jackson-databind</artifactId>
<scope>compile</scope>

</dependency>

<dependency>

<groupId>io.micronaut</groupIld>
<artifactId>micronaut-http-server-netty</artifactId>
<scope>compile</scope>

</dependency>

<dependency>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-jackson-databind</artifactId>
<scope>compile</scope>

</dependency>

<dependency>
<groupId>io.micronaut</groupId>

119

CHAPTER7 API PLATFORM AND DATA HANDLER

<artifactId>micronaut-runtime</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>io.micronaut.data</groupId>
<artifactId>micronaut-data-jdbc</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>io.micronaut.reactor</groupId>
<artifactId>micronaut-reactor</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>
<dependency>
<groupId>io.micronaut.reactor</groupId>
<artifactId>micronaut-reactor-http-client</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>io.micronaut.sql</groupId>
<artifactId>micronaut-jdbc-hikari</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>io.micronaut.data</groupId>
<artifactId>micronaut-data-hibernate-jpa</artifactId>
</dependency>

120

CHAPTER7 API PLATFORM AND DATA HANDLER

<dependency>
<groupId>io.micronaut.sql</groupId>
<artifactId>micronaut-hibernate-jpa</artifactId>
</dependency>
<dependency>
<groupId>io.swagger.core.v3</groupld>
<artifactId>swagger-annotations</artifactId>
</dependency>
<dependency>
<groupId>jakarta.annotation</groupId>
<artifactId>jakarta.annotation-api</artifactId>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>io.micronaut.build</groupId>
<artifactId>micronaut-maven-plugin</artifactId>
</plugin>
<plugin>

121

CHAPTER7 API PLATFORM AND DATA HANDLER

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<1-- Uncomment to enable incremental
compilation -->
<1-- <useIncrementalCompilation>false
</useIncrementalCompilation> -->
<annotationProcessorPaths combine.
children="append">
<path>
<groupId>io.micronaut</groupId>
<artifactId>micronaut-http-validation
</artifactId>
<version>${micronaut.version}</version>
</path>
<path>
<groupId>io.micronaut.data</groupId>
<artifactId>micronaut-data-processor</
artifactId>
<version>${micronaut.data.version}</version>
</path>
</annotationProcessorPaths>
<compilerArgs>
<arg>-Amicronaut.processing.group=com.rest</arg>
<arg>-Amicronaut.processing.module=quote</arg>
</compilerArgs>
</configuration>
</plugin>
</plugins>
</build>
</project>

122

CHAPTER7 API PLATFORM AND DATA HANDLER

Product

Here is a POJO defining properties of a product or catalog:

package com.rest.domain;

import io.swagger.v3.oas.annotations.media.Schema;
import javax.persistence.*;

import javax.validation.constraints.Size;
@Schema(description="Product")

@Entity

public class Product {

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name="1ID")

private Long id;

@Column(name="NAME")

@Size(max = 20)

private String name;
@Column(name="DESCRIPTION")

@Size(max = 50)

private String description;;
@Column(name="CREATE DATE")

@Size(max = 40)

private String createDate;;
@Column(name="CHANGE DATE")

@Size(max = 40)

private String changeDate;;
@Column(name="UNIT PRICE")

@Size(max = 20)

private float unitPrice;;
@Column(name="CREATOR")

private String creator;
public Long getId() {

123

CHAPTER7 API PLATFORM AND DATA HANDLER

return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
public String getDescription() {

return description;

}

public void setDescription(String description) {
this.description = description;

}

public String getCreateDate() {
return createDate;

}
public void setCreateDate(String createDate) {

this.createDate = createDate;

}
public String getChangeDate() {

return changeDate;

}
public void setChangeDate(String changeDate) {

this.changeDate = changeDate;

}
public float getUnitPrice() {

return unitPrice;

124

CHAPTER7 API PLATFORM AND DATA HANDLER

public void setUnitPrice(float unitPrice) {
this.unitPrice = unitPrice;

}

public String getCreator() {
return creator;

}

public void setCreator(String creator) {
this.creator = creator;

};

}

uote

Here is quote POJO having quote properties with mapping to quote lines:

package com.rest.domain;

import io.swagger.v3.oas.annotations.media.Schema;
import javax.persistence.*;

import javax.validation.constraints.Size;

import java.util.Llist;
@Schema(description="Quote")
@Entity

public class Quote {

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name="1D")

private Long id;

@Column(name="CUSTOMER_ID")

private Long customerId,
@Column(name="QUOTE DATE")

@Size(max = 50)

private String quoteDate;;

@Column(name="BILLING ADDRESS")

125

CHAPTER7 API PLATFORM AND DATA HANDLER

@Size(max = 20)
private String billingAddress;
@Column(name="BILLING CITY")
@Size(max = 20)
private String billingCity;;
@Column(name="BILLING STATE")
@Size(max = 20)
private String billingState;;
@Column(name="BILLING COUNTRY")
@Size(max = 20)
private String billingCountry;;
@Column(name="BILLING POSTAL CODE")
@Size(max = 20)
private String billingPostalCode;;
@Column(name="TOTAL")
@Size(max = 20)
private float total;
@0neToMany (fetch = FetchType.EAGER, cascade =
CascadeType.ALL)
@JoinTable(name = "Quote_Line Mapping",
joinColumns = @JoinColumn(name = "quote id"),
inverseJoinColumns = @JoinColumn(name = "id"))
private List<Quoteline> quotelines;
public void setQuotelLines(List<Quoteline> quotelines) {
this.quotelines = quotelines;
}
public List<QuotelLine> getQuotelines() {
return quotelines;

}

public Long getId() {
return id;

}

126

CHAPTER7 API PLATFORM AND DATA HANDLER

public void setId(Long id) {
this.id = id;

}

public Long getCustomerId() {
return customerId;

}

public void setCustomerId(Long customerId) {
this.customerId = customerId,

}

public String getQuoteDate() {
return quoteDate;

}

public void setQuoteDate(String quoteDate) {
this.quoteDate = quoteDate;

}

public String getBillingAddress() {
return billingAddress;

}

public void setBillingAddress(String billingAddress) {
this.billingAddress = billingAddress;

}

public String getBillingCity() {
return billingCity;

}

public void setBillingCity(String billingCity) {
this.billingCity = billingCity;

}

public String getBillingState() {
return billingState;

}
public void setBillingState(String billingState) {

127

CHAPTER7 API PLATFORM AND DATA HANDLER

this.billingState = billingState;
}
public String getBillingCountry() {
return billingCountry;
}
public void setBillingCountry(String billingCountry) {
this.billingCountry = billingCountry;
}
public String getBillingPostalCode() {
return billingPostalCode;
}
public void setBillingPostalCode(String billingPostalCode) {
this.billingPostalCode = billingPostalCode;
}
public float getTotal() {
return total;
}
public void setTotal(float total) {
this.total = total;

};
Quoteline

Here is quote line POJO with properties of the line item and mapping to the
product:

package com.rest.domain;

import io.swagger.v3.oas.annotations.media.Schema;
import javax.persistence.*;
@Schema(description="QuotelLine")
@Entity

public class Quoteline {

@Id

@GeneratedValue(strategy = GenerationType.IDENTITY)

128

CHAPTER7 API PLATFORM AND DATA HANDLER

@Column(name="1D")
private Long id;
@Column(name="QUOTE_ID")
private Long quoteld,
@0neToOne(cascade = CascadeType.ALL)
@JoinColumn(name = "product id", referencedColumnName = "id")
private Product product;
@Column(name="UNIT PRICE")
private float unitPrice;
@Column(name="QUANTITY")
private Long quantity;
public Product getProduct() {
return product;
}
public void setProduct(Product product) {
this.product = product;
}
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public void setId(Long id) {
this.id = id;
}
public Long getQuoteId() {
return quoteld;
}
public void setQuoteId(Long quoteId) {
this.quoteld = quoteld;

129

CHAPTER7 API PLATFORM AND DATA HANDLER

public float getUnitPrice() {
return unitPrice;

}

public void setUnitPrice(float unitPrice) {
this.unitPrice = unitPrice;

}

public Long getQuantity() {
return quantity;

}

public void setQuantity(Long quantity) {
this.quantity = quantity;

};

}

Next, we will create repositories for product, quote, and quote line items for
CRUD operations.

ProductRepo

package com.rest.repository;

import io.micronaut.data.annotation.Repository;
import io.micronaut.data.repository.CrudRepository;
import com.rest.domain.Product;

@Repository

public interface ProductRepo extends
CrudRepository<Product, Long> {

}
QuoteRepo

package com.rest.repository;

import io.micronaut.data.annotation.Repository;
import io.micronaut.data.repository.CrudRepository;
import com.rest.domain.Quote;

130

CHAPTER7 API PLATFORM AND DATA HANDLER

@Repository
public interface QuoteRepo extends
CrudRepository<Quote, Long> {

}
QuoteLineRepo

package com.rest.repository;

import io.micronaut.data.annotation.Repository;
import io.micronaut.data.repository.CrudRepository;
import com.rest.domain.Quoteline;;

@Repository

public interface QuotelineRepo extends
CrudRepository<Quoteline, Long> {

}

Next, we will create a quote controller implementing Get, Post, Put, and Delete
endpoints for the quote API.

QuoteController

package com.rest.controller;

import com.rest.domain.Quote;

import com.rest.repository.QuoteRepo;
import io.micronaut.http.annotation.Get;
import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Delete;
import io.micronaut.http.annotation.Post;
import io.micronaut.http.annotation.Put;
import io.micronaut.http.annotation.Body;
import java.util.Llist;

import java.util.Arraylist;
@Controller("/quote™) // <2>

public class QuoteController {

131

CHAPTER7 API PLATFORM AND DATA HANDLER

QuoteRepo quoteRepo;
public QuoteController(QuoteRepo quoteRepo) { // <3>
this.quoteRepo = quoteRepo;
}
@Post
public Quote createQuote(@Body Quote quote) {
return quoteRepo.save(quote);
}
@Get("/{id}")
public Quote getQuote (Long id) {
Quote quote = quoteRepo.findById(id).get();
return quote;
}
@Get
public List<Quote> getQuotes() {
Iterable<Quote> quotes = quoteRepo.findAll();
List<Quote> result = new Arraylist<Quote>();
quotes.forEach(result::add);
return result;
}
@Put("/{id}")
public void updateQuote (Long id, Quote update) {
Quote quote = quoteRepo.findById(id).get();
quoteRepo.delete(quote);
quoteRepo.save(update);
}
@elete("/{id}")
public void deleteQuote(Long id) {
Quote quote = quoteRepo.findById(id).get();
quoteRepo.delete(quote);

132

CHAPTER7 API PLATFORM AND DATA HANDLER

Creating quote

curl -d '{ "customerId":"123", "quoteDate":"11/07/2022",
"billingAddress":"722 Main St", "billingCity":"

San Jose", "billingState": "CA", "billingCountry":

"USA", "billingPostalCode": "95035", "total" :

123, "quotelines" : [{"quoteId" : 1, "product" :
{"name":"test", "description":"test", "createDate":"test",
"changeDate":"12/12//2012", "unitPrice": 1.0, "creator":
"creat" }, "unitPrice": 12, "quantity" : 1}]}' -H 'Content-
Type: application/json' http://localhost:8080/quote

Reading quote
curl http://localhost:8080/quote/1

Summary

In this chapter, we started with the API Platform architecture and then
got into the data handler pattern for the integration of RESTful APIs with
actual data sources. In the exercise, we demonstrated the implementation
of a data handler using JPA.

133

CHAPTER 8

AP| Management
and CORS

In this chapter, we will start with facade and review API management
requirements/solutions available.

Facade

In this section, we will first review the facade design pattern, and then,
in the second part, we will get into details about how facade is applied to
the APIs.

Facade Pattern

Before we discuss the facade pattern, let’s consider what a facade is in the
real world. The most obvious example is that of buildings, which all have
an exterior to protect and decorate, hiding the internal workings of the
interior. This exterior is the facade.

Now, we can get closer to APIs by considering operating systems. Just
like in buildings, an operating system provides an exterior shell to the
interior functionality of a computer. This simplified interface makes an OS
easier to use and protects the core from clumsy users.

© Sanjay Patni 2025 135
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_8

CHAPTER 8 API MANAGEMENT AND CORS

This is where the definition of the facade pattern in on design patterns
comes in handy:

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsys-
tem easier to use.

Consider Figure 8-1; you can see how the facade pattern puts an
intermediate layer between the packages of the application and any client
that wants to interact with them.

includes includes
/ ‘\
/
v 4 \\
Package? | Package2 |

Figure 8-1. Facgade pattern

A diagram illustrates the facade pattern. The facade includes two
packages which are package 1 and package 2.

API Facade

Like all implementations of the facade pattern, an API facade is a simple
interface to a complex problem. Figure 8-2 shows internal subsystems in
an enterprise. As shown, each internal subsystem is complex in itself: for
example, JDBC hides the inner workings of database connectivity.

136

CHAPTER 8 APl MANAGEMENT AND CORS

: Content
Big Management I
System .

Figure 8-2. Internal subsystems

A chart of internal subsystems consists of layers of a big system, DB,
content management, SOAP, JDBC, and RSS.

Figure 8-3 shows an API facade layer on the top of internal subsystems
of the enterprise, providing a unified interface to apps.

App
App Developer

AP| Facade i

corlterrt
gsment JDBC

Figure 8-3. API facade—high level

An illustration of the API process. At the top are the app and app
developer. In the middle is the API facade. At the bottom are the layers of
big system, DB, content management, SOAP, JDBC, and RSS.

Implementing an API facade pattern involves three basic steps:

¢ Design the API: Identify the URLSs, request parameters
and responses, payloads, headers, query parameters,
and so on.

137

CHAPTER 8 APl MANAGEMENT AND CORS

« Implement the design with mock data: App
developers can then test the API before the API
is connected to internal subsystems, with all the
complications that entail.

« Connect the facade with the internal systems to create
the live APL

Figure 8-4 shows these layers.

App
Developer
- Ideal Design Y
API Facade W
Mediate
Content
Big DB | Management ||| goAP JDBC RSS
System

Figure 8-4. API facade—Ilayers

The API process for development includes app developer at the
top, followed by a double headed arrow labeled ideal design and two
rectangular pyramids labeled API facade and meditate. The bottom
consists of layers of big system, DB, content management, SOAP, JDBC,
and RSS.

138

CHAPTER 8 APl MANAGEMENT AND CORS

APl Management

An API management tool provides the means to expose your API to
external developers in an easy and affordable manner.
Here are the features of an API management service:

« Documentation

e Analytics and statistics

¢« Deployment

e Developer engagement

e Sandbox environment

e Traffic management and caching abilities
s Security

e Availability

¢« Monetization

« APl life cycle management

¢ API management vendors implement their solution in
three different ways:

— Proxy: All traffic goes through the API management tool,
which is placed as a layer between the application and users.

— Agents: These are plug-ins for servers. They do not intercept
API calls like proxies.

— Hybrid: This approach picks features of proxies and agents
and integrates them. You can then pick which features
you need.

139

CHAPTER 8 API MANAGEMENT AND CORS

API Life Cycle

The default API life cycle has the following stages:

e Analysis: The API is analyzed, and mock responses
are created for a limited set of consumers to try out
the API and provide feedback. It's also analyzed for
monetization, as discussed in the following section.

« Being created/development: The API is being created:
designed, developed, and secured. The API metadata is
saved, but it is not visible yet nor deployed.

« Published/operations: The API is visible and
eventually published and is now in the maintenance
stage, where it is scaled and monitored.

In addition, there are two more stages:

« Deprecated: The API is still deployed (available at
runtime to existing users), but is not visible to new
users. An API is automatically deprecated when a new
version is published.

« Retired: The API is unpublished and deleted.

These are discussed in the next section.
Figure 8-5 shows an API life cycle.

140

CHAPTER 8 APl MANAGEMENT AND CORS

Monetize Develop

@ Analyze Secure

Monitor Publish
@ Scale

The API life cycle includes design, develop, secure, publish, scale,

J

Figure 8-5. APl life cycle

monitor, analyze, and monetize.

API Retirement

As old age comes, we get to retire, and the same is true with APIs. With
time and due to the following reasons, an API is retired or deprecated:

e Lack of partner or third-party developer innovation
¢ Losing market share due to exposure of data by APIs

e Changes in the technology stack, for example, REST
replacing SOAP

141

CHAPTER 8 APl MANAGEMENT AND CORS

« Security concern: Making public APIs private due
to security requirement of the information or data
exposed by APIs

« Versioning: Most common reason due to
functionality changes

Some of the examples of API retirement are Netflix, Google Earth,
Twitter V1.0, etc.

API Monetization

Digital assets or services provide real value to customers, partners, and end
users, and hence, they should be a source of revenue for your company, as
well as an important part of your business model.

There are three business models for monetizing APIs:

« The revenue share model, where the API consumer
gets paid for the incremental business they trigger for
the API provider.

« The fee-based model, where the API consumer pays
the provider for API usage.

e The third and final business model is freemium.
Freemium models can be based on a variety of factors
such as volume, time, or some combination; they can
be implemented as standalone or hybrid models (in
conjunction with the revenue share or fee-based).

142

CHAPTER 8 APl MANAGEMENT AND CORS

Cross-0rigin Resource Sharing (CORS)

“Cross-Origin Resource Sharing” (CORS) is a mechanism that allows
TypeScript or JavaScript on a web page to make XMLHttpRequests to
another domain, not the domain the JavaScript originated from. Such
“cross-domain” requests would otherwise be forbidden by web browsers,
per the same origin security policy. CORS defines a way in which the
browser and the server can interact to determine whether or not to allow
the cross-origin request. It is more useful than only allowing same-origin
requests, but it is more secure than simply allowing all such cross-origin
requests. The Cross-Origin Resource Sharing standard works by adding
new HTTP headers that allow servers to describe the set of origins that are
permitted to read that information using a web browser.

How to implement CORS? For example:

return Response.ok() //200

.entity(quote)
.header("Access-Control-Allow-Origin", "*")
.header("Access-Control-Allow-Methods", "GET, POST,
DELETE, PUT").

allow("OPTIONS").build();

Summary

In this chapter, we reviewed API management requirements/solutions
and discussed Cross-Origin Resource Sharing (CORS) to support client
implementation.

143

CHAPTER 9

API Security

In this chapter, we will start with the review of the OAuth 2 standard for
securing RESTful APIs, then review JWT implementation, and do an
exercise on implementing basic security with Micronaut.

API Security—OAuth 2

OAuth 2 is a standard for delegating authorization for accessing resources
by HTTP.

With OAuth, we can give access rights to the mobile apps without
giving a password. Instead, a token is handed over to the application. A
token represents access rights for the subset of data for a short time frame.
Please refer to https://oauth.net/2/ for general information about
OAuth 2.

To obtain a token, the user first logs onto the website of the OAuth
server. The generated token can be an authorization code, access token, or
refresh code. OAuth is used under the hood of a number of modern clouds.

List of OAuth providers: https://en.wikipedia.org/wiki/List of
OAuth_providers

OAuth is specified and standardized by IETF in RFC6749 http://
tools.ietf.org/html/rfc6749. OAuth 1 is outdated.

© Sanjay Patni 2025 145
S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9_9

CHAPTER9 API SECURITY

There are two terms: authentication and authorization.

« Authentication is a concept that answers the question:
Who are you?

« Authorization is a concept that answers the question:
What are you allowed to do?

Roles
OAuth 2 defines four roles:

+« Resource owner: Generally yourself.

« Resource server: Server hosting protected data (e.g.,
Google hosting your profile and personal information).

« Client: Application requesting access to a resource
server (it can be your PHP website, a JavaScript
application, or a mobile application).

« Authorization server: Server issuing an access token
to the client. This token will be used for the client to
request the resource server. This server can be the same
as the authorization server (the same physical server
and the same application), and it is often the case.

Tokens

Tokens are random strings generated by the authorization server and are
issued when the client requests them.

146

CHAPTER9 API SECURITY

There are two types of tokens:

Access token: This is the most important because it
allows the user data from being accessed by a third-
party application. This token is sent by the client as a
parameter or as a header in the request to the resource
server. It has a limited lifetime, which is defined by
the authorization server. It must be kept confidential
as soon as possible, but we will see that this is not
always possible, especially when the client is a web
browser that sends requests to the resource server via
JavaScript. In general access, a token will be designed
to be opaque to the client, but when it’s used as a user
authentication, the client will be needed to be able to
derive some information from the token.

Refresh token: This token is issued with the access
token, but unlike the latter, it is not sent in each request
from the client to the resource server. It merely serves
to be sent to the authorization server for renewing the
access token when it has expired. For security reasons,
it is not always possible to obtain this token. We will see
later in what circumstances.

Figure 9-1 shows OAuth-based interactions.

147

CHAPTER9 API SECURITY

Accesses

b Resources Data ” I l

Y

Client Application —
Resource Server

Accesses Delegates
| Tok
Resources il Authorization
Authenticates,
Authorizes
Resource Owner OAuth Server

Figure 9-1. OAuth-based interactions

Register as a Client

Since you want to retrieve data from a resource server using OAuth 2, you
have to register as a client of the authorization server.

Each provider is free to allow this by the method of his choice. The
protocol only defines the parameters that must be specified by the client
and those to be returned by the authorization server.

Here are the parameters (they may differ depending on the providers):

Client Registration

Application name: The application name
Redirect URLs: URLs of the client for receiving authorization code and
access token

148

CHAPTER9 API SECURITY

Grant type(s): Authorization types that will be used by the client
JavaScript origin (optional): The hostname that will be allowed to request
the resource server via XMLHttpRequest

Authorization Server Response

Client Id: Unique random string
Client secret: Secret key that must be kept confidential
More information: RFC 6749—Client Registration

Authorization Grant Types

OAuth 2 defines four grant types depending on the location and the nature
of the client involved in obtaining an access token.

Authorization Code Grant

We will review authorization code grant and its flow in this section. This
type of grant is used to sign in to Google and Facebook.

When Should It Be Used?

It should be used when the client is a web server or website. It allows you
to obtain a long-lived access token since it can be renewed with a refresh
token (if the authorization server enables it).

Example:

Resource owner: You

Resource server: A server

Client: Any website

Authorization server: A server

149

CHAPTER9 API SECURITY

Scenario:

1.

A website wants to obtain information about your
profile.

You are redirected by the client (the website) to the
authorization server.

If you authorize access, the authorization server
sends an authorization code to the client (the
website) in the callback response.

Then, this code is exchanged against an
access token between the client and the

authorization server.

The website is now able to use this access token
to query the resource server and retrieve your
profile data.

You never see the access token; it will be stored by the website (in

session, for example). Server also sends other information with the access

token, such as the token lifetime and eventually a refresh token.

150

Sequence diagram:

Figure 9-2 shows sequence diagram for authorization code grant flow.

CHAPTER9 API SECURITY

Authorization Code Grant Flow

E E Authorization Code Request ’I'E'I

i i Needs client_id, redirect_uri,

E E response_type=code][, scope, state]
]]

L]]

Needs client_id, client_secret, redirect_un,
grant_type=authorization_code, code

L L L L

IS

Figure 9-2. Authorization code grant flow

Implicit Grant Flow

We will review implicit grant and its flow in this section.

When Should It Be Used?

It is typically used when the client is running in a browser using a scripting
language such as JavaScript. This grant type does not allow the issuance of
arefresh token.

151

CHAPTER9 API SECURITY

Example:

Resource owner: You

Resource server: A server

Client: A website using Angular]S, for example
Authorization server: A server

Scenario:

1. The client (Angular]S) wants to obtain information
about your Facebook profile.

2. You are redirected by the browser to the
authorization server (Facebook).

3. Ifyou authorize access, the authorization server
redirects you to the website with the access token
in the URI fragment (not sent to the web server).
Example of callback: http://example.com/
oauthcallback#access token=MzImNDc3M2VjMmQzN.

4. This access token can now be retrieved and
used by the client (Angular]S) to query the
resource server (Facebook). Example of query:
https://graph.facebook.com/me?access
token=MzJImNDc3M2VjMmQz.

Maybe you wonder how the client can make a call to the Facebook API
with JavaScript without being blocked because of the same origin policy?
Well, this cross-domain request is possible because Facebook authorizes
it, thanks to a header called Access-Control-Allow-Origin present in the
response.

Note

This type of authorization should only be used if no other type of
authorization is available. Indeed, it is the least secure because the access
token is exposed (and therefore vulnerable) on the client side.

152

CHAPTER9 API SECURITY

Sequence diagram
Figure 9-3 shows the sequence diagram for implicit grant flow.

Implicit Grant Flow

mlm

E
|

i | Access Token 1! ! E
]] 1]
]] 1]
H H Needs client_id, redirect_uri H
i i response_type=token{, scope, state] E
i Login & Consent i E
] L] 1]
]]]
: l¢e mnme mnmn ACCESS ToKEN i
i | Access Token Info Request , | E
| p Access Token Info :
i - 1]
: h H H
i Validate client_id :‘—_l i H
! ' H H
I 1 1 I
! I Call AP1 wilth Access Token ! Al
H H H .
1 1 H Must implement CORS
i i i for Cross-Domain Requests

1 1

» | Response with Data

;‘ ----- e (] TRy 1

- . -

Figure 9-3. Sequence diagram for implicit grant flow

Resource Owner Password Credentials
Grant

We will review resource owner password credentials grant and its flow in
this section.

153

CHAPTER9 API SECURITY

When Should It Be Used?

With this type of authorization, the credentials (and thus the password)
are sent to the client and then to the authorization server. It is therefore
imperative that there is absolute trust between these two entities. It is
mainly used when the client has been developed by the same authority
as the authorization server. For example, we could imagine a website
named “example.com” seeking access to protected resources of its own
subdomain “api.example.com” The user would not be surprised to type
his login/password on the site “example.com” since his account was
created on it.

Example:

Resource owner: You have an account on the acme.com website of the
Acme company.

Resource server: Acme company exposes its API at api.acme.com.

Client: acme.com website from Acme company.

Authorization server: An Acme server.

Scenario:

1. The Acme company, doing things well, thought
to make available a RESTful API to third-party
applications.

2. This company thinks it would be convenient to use
its own API to avoid reinventing the wheel.

3. The company needs an access token to call the
methods of its own APL

4. For this, the company asks you to enter your login
credentials via a standard HTML form as you
normally would.

154

CHAPTER9 API SECURITY

5. The server-side application (website “acme.
com”) will exchange your credentials against an
access token from the authorization server (if your
credentials are valid, of course).

6. This application can now use the access token to
query its own resource server (api.acme.com).

Sequence diagram
Figure 9-4 shows the sequence diagram for this flow.

Resource Owner Password Credentials Grant Flow

! Authenticate with Crodeminls’i
(]

i Access Token Request e

L}
)
1
1}
]
‘
Needs client_id, client_secret, redirect_un, | |
grant_type d, e, p d| !
i
L]
1]

i Access Token [+ Refresh Tokﬂﬂu

loop J

1 Call API with Access Token

'S

o)
©
s
H
e
£
-
o
2
15 5

oo ooeoomomooooooonon....Response wih Dai

Figure 9-4. Resource owner password credentials grant flow

Client Credentials Grant

This type of authorization is used when the client is himself the resource
owner. There is no authorization to obtain from the end user.

Example:

Resource owner: Any website

Resource server: Google Cloud Storage

155

CHAPTER9 API SECURITY

Client: The resource owner
Authorization server: A Google server
Scenario:

1. A website stores its files of any kind on Google Cloud
Storage.

2. The website must go through the Google API to
retrieve or modify files and must authenticate with
the authorization server.

3. Once authenticated, the website obtains an access
token that can now be used for querying the
resource server (Google Cloud Storage).

Here, the end user does not have to give his authorization for accessing
the resource server.

Sequence diagram
Figure 9-5 shows the sequence diagram for this flow.

156

CHAPTER9 API SECURITY

Client Credentials Grant Flow

(Resource Owner)
Eﬁccass Token Request : E
i ’I"'I 1
" Needs client_id, client_secret, '
E grant_type=client_credentials[, scope] E
]]
E Access Token E
i]+ Not Recommended Refresh Token] '
[[

£

1 Call API with Access Token

Authorization Server | | Resource Server
(Resource Owner) g

Figure 9-5. Client credentials grant flow

API Security—JSON Web Token

JWT stands for JSON Web Token, and it is a commonly used stateless
user authentication standard used to securely transmit information
between the client and server in a JSON format. A JWT is encoded and not
encrypted by default. It is digitally signed using a secret key known only to
the server.

A JSON Web Token consists of three parts separated by a period: the
header, the payload, and the signature. Each section is base64 encoded.

157

CHAPTER9 API SECURITY

The steps involved in a typical JWT authorization flow are as follows:

1. Authentication: The user signs in using username
and password, or using, for example, Google
or Facebook. The server verifies the provided
credentials.

2. Token generation and sending token to the client:
The server will generate the JWT and send it to the
client, which stores it for future use.

3. Sending the token to the server: When the client
wants to access a protected resource on the server,
it sends the JWT in the Authorization header of the
HTTP request.

4. Verifying the token: The server receives the request
and verifies the JWT by checking its signature using
the secret key that was used to sign it. If the JWT is
valid, the server extracts the information contained
in it and uses it to determine what actions the user is
authorized to perform.

5. Authorizing the request: If the user is authorized to
access the resource, the server returns the requested
data. If the user is not authorized, the server returns

an error message.
Advantages
« Lightweight.

« Portable: Can be processed on multiple platforms, web
and mobile.

s« JSON parsers are common in most programming
languages.

158

CHAPTER9 API SECURITY

« Protected against tampering because of the secret key
stored on server side.

e The server does not need to store any session
information, because of the stateless nature of the

JWT token.
Disadvantages

e Can provide full access if intercepted. That’s why JWTs
on client side should be stored somewhere secure, for
example, in the browser in an HttpOnly cookie.

¢ On server side, should manually mark nonexpired JW'
as invalid on logout. A JWT can still be valid even after
it has been deleted from the client.

EXERCISE—BASIC SECURITY

Create an application using the Micronaut Command Line Interface or with
Micronaut Launch.

mn create-app example.micronaut.micronautguide \
--features=security,graalvm \
--build=maven \
--lang=java \
--test=junit

To keep this simple, create a naive AuthenticationProvider to simulate user’s
authentication.

src/main/java/example/micronaut/
AuthenticationProviderUserPassword.java

159

CHAPTER9 API SECURITY

package example.micronaut;

import io.micronaut.core.annotation.NonNull;
import io.micronaut.core.annotation.Nullable;
import io.micronaut.http.HttpRequest;

import io.micronaut.security.authentication.
AuthenticationFailureReason;

import io.micronaut.security.authentication.
AuthenticationRequest;

import io.micronaut.security.authentication.
AuthenticationResponse;

import io.micronaut.security.authentication.provider.
HttpRequestAuthenticationProvider;

import jakarta.inject.Singleton;

@Singleton
class AuthenticationProviderUserPassword implements
HttpRequestAuthenticationProvider {

public AuthenticationResponse authenticate(
@Nullable HttpRequest httpRequest,
@NonNull AuthenticationRequest<String, String>
authenticationRequest
) 1
return authenticationRequest.getIdentity().equals
("sherlock") && authenticationRequest.getSecret().
equals("password")
? AuthenticationResponse.success
(authenticationRequest.getIdentity())
: AuthenticationResponse.failure(Authentication
FailureReason.CREDENTIALS DO NOT MATCH);

160

CHAPTER 9 API SECURITY
Create HomeController which resolves the base URL /:

package example.micronaut;

import io.micronaut.http.MediaType;

import io.micronaut.http.annotation.Controller;
import io.micronaut.http.annotation.Get;

import io.micronaut.http.annotation.Produces;
import io.micronaut.security.annotation.Secured;
import io.micronaut.security.rules.SecurityRule;

import java.security.Principal;

@Secured(SecurityRule.IS AUTHENTICATED)
@Controller
public class HomeController {

@Produces(MediaType.TEXT PLAIN)

@Get

String index(Principal principal) {
return principal.getName();

}

Running the application
curl -v -u sherlock:password localhost:8080

If you open http://localhost:8080 in a browser, a login dialog pops up due to
the WWW-Authenticate header.

Refer to the following for details:

https://guides.micronaut.io/latest/micronaut-security-
basicauth-maven-java.html

161

CHAPTER 9 API SECURITY
Exercise—JSON Web Token
Refer to the following for JWT implementation in Micronaut:

https://guides.micronaut.io/latest/micronaut-security-jwt-
gradle-java.html

Summary

In this chapter, we reviewed the OAuth 2 standard for securing RESTful
APIs and did an exercise on implementing basic Spring Security. We also
reviewed concepts about HTTP, server, and JWT implementation.

To summarize, in this book, we reviewed REST API concepts in three
tracks: architecture, design, and coding.

Topics covered on the architecture front included web architecture
style, API solution architecture, API portfolio architecture, API Platform
architecture, API management, and Security-OAuth.

Topics included on the design track included REST API fundamentals,
data exchange formats, SOAP vs. REST, XML vs. JSON, introduction to API
design (REST and JAX-RS), API design best practices, modeling RESTful
APIs, building RESTful API framework, interacting with RDBMS (MySQL)
and NoSQL databases, consuming RESTful APIs (i.e., JSON and XML), and
security.

We also completed exercises on the coding track to understand how
each concept can be implemented at the end of each chapter.

162

Index

A

Apache Karaf, 15
API framework, 92
API types/components, 92
DAO, 93
facade, 93
services layer, 93
services layer
implementation, 94
API platforms
architecture, 103, 109, 111, 133
capabilities, 105

development platform, 104-107

engagement platform, 105,
107,108
enterprise, 110, 111
importance, 104
runtime platform, 104, 107
stages, 108
API portfolio
messages, 23
online flight application, 22
online quote application, 23
API portfolio architecture
change management, 90
consistency, 88
consistency rules, 89
customizations, 88, 90

© Sanjay Patni 2025

discoverability, 89, 90
governance processes, 89
longevity, 89
requirements, 87

reuse, 88, 90

APIs, see Application programming

interfaces (APIs)

API security

authorization code grant, 149
diagram, 150, 151
uses, 149, 150
authorization grant types, 149
authorization server
response, 149
client credentials grant, 155, 157
client registration, 148, 149
create application, 159, 160
HomeController, 161
implicit grant flow, 151
diagram, 153
uses, 151, 152
JWTs, 157-159
OAuth 2, 145, 146, 162
OAuth-based interactions,
147, 148
resource owner password
credentials grant
flow, 153-155

163

S. Patni, Pro RESTful APIs with Micronaut, https://doi.org/10.1007/979-8-8688-1243-9

INDEX

API security (cont.)
run application, 161
tokens, 146, 147
Application class, 26, 74
Application Programming
Experience (APX), 47, 49, 93
Application programming
interfaces (APIs), 1
architecture design, 52, 53
Blueprint, 57
consumers, 108
consumers and producers, 87
creation process, 50, 76
description, 51
designers, 60
design strategies, 48, 49, 76
domain analysis, 51
error codes, 61
error handling, 61
experience APIs, 93
facade, 65
facade pattern, 136-138
formats, 64
implementation, 53
XML/JSON messages, 41-44
life cycle, 140, 141
management, 139
methodology, 50
modeling, 54-57, 76
monetization, 142
pagination, 64
partial response, 63
process APIs, 93
prototyping, 53

164

providers, 103
publishing, 54
resources, 59
retirement, 141, 142
solution architecture, 65, 66
cloud solutions, 67
components, 66
integration solutions, 67
IoT, 68
mobile solutions, 66, 67
multichannel solutions, 67
smart TV solutions, 68
web solutions, 67
stakeholders, 68, 69, 87
system APIs, 93
versioning, 62, 63
APX, see Application Programming
Experience (APX)
Authentication, 20, 106, 146, 158
Authentication.getRoles()
method, 86
Authorization, 106, 145, 146, 149,
152, 154-156
Authorization server, 146-148,
152, 154-156

B

Back-end systems, 49, 53, 111
Business models, 142

C

Caching, 8, 21

Change management, 54,
90-91,114

Client, 54, 79, 85, 91, 108, 136,
146-149, 151, 154

Client-server, 7, 9

Code-on-demand, 8-9

Command query responsibility
segregation (CQRS),
112,113

architecture, 115, 116

CORS, see Cross-Origin Resource
Sharing (CORS)

CQRS, see Command query
responsibility
segregation (CQRS)

Create, read, update, and delete
(CRUD) operations

API tests(curl), 100, 101
architecture, 113, 114
JSON representation, 94, 95
message, 95, 96

message controller, 96-98
MessageService, 99, 100
pom.xml, 95

Cross-Origin Resource Sharing
(CORS), 143

CURL, 25

D

DAO, see Data access object (DAO)
Data access object (DAO), 93, 112
creating quote, 133

INDEX

pom.xml, 117, 118, 120-122
product properties, 123, 124
ProductRepo, 130
QuoteController, 131, 132
quote line properties, 128, 130
QuoteLineRepo, 131
quote properties, 125-128
QuoteRepo, 130, 131
reading quote, 133
Databases, 64, 66, 92, 93, 104, 111,
112,115,116
Data handler, 112, 117
Dependency injection (DI), 94
Design pattern, 10, 91, 92, 94, 112,
116, 135, 136
Developers, 1, 65
DI, see Dependency injection (DI)
Digital assets, 1, 142
DropWizard, 15

E

Expedia, 1
Extensible Markup
Language (XML)
APIs implementation, 41-43
comments, 31, 32
data, 29, 30
definition, 29
email message structure, 30
endpoints, 42, 43
vs. HTML, 30
human-readable documents, 30

165

INDEX

Extensible Markup

Language (XML) (cont.)

importance, 32

vs. JSON, 39, 40

machine-oriented record
formats, 30

messages, 42

POSTMAN, 43, 44

pros and cons, 33, 34

tags, 30

uses, 33

F

Facade design pattern, 135, 136
Facebook, 61, 63, 64, 149, 152, 158
Flight class, 69

FlightController class, 71-72
FlightService class, 70-71

G

Google, 63, 64, 149, 158

H

HATEOAS, see Hypermedia as the
engine of application state
(HATEOAS)

HTML, 29-31, 67, 154

Hypermedia, 2, 9

Hypermedia as the engine of
application state
(HATEOAS), 7,9-10

166

IAM, see Identity and Access
Management (IAM)

IDE, 16, 25, 106

Identity and Access Management
(IAM), 110

Intelli], 25

Internal APIs, 1

Internet of Things (10T), 68

10T, see Internet of Things (IoT)

J, K
Java API for RESTful web services
(JAX-RS)
annotations, 77, 84, 85
cookie parameter, 82
definition, 77
developers, 77
features, 77, 78
form parameter, 82
HTTP parameter, 82
injectable parameter types, 85
injection, 80, 81
matrix parameter, 82
media types, 79
micronaut
implementation, 83, 84
path parameter, 81
query parameter, 81
SecurityContext, 86
Java Persistence API (JPA), 117, 133
JavaScript, 143

JavaScript Object
Notation (JSON), 34
APIs implementation, 41-43
basic data types, 35, 36
conventions, 34
endpoints, 42, 43
importance, 37, 38
messages, 42
POSTMAN, 43, 44
pros and cons, 38, 39
uses, 38
JAX-RS, see Java API for RESTful
web services (JAX-RS)
JDK 21, 25
Jersey, 15, 106
JPA, see Java Persistence API (JPA)
JSON, see JavaScript Object
Notation (JSON)
JSON Web Tokens (JWTSs),
20, 157-159
JWTs, see JSON Web

Tokens (JWTs)

L

LinkedIn, 63, 64

Maven, 26-27, 41

Micronaut, 15
features, 15, 27
framework, 94
installation, 24

INDEX

JAX-RS, 83, 84
JWT implementation, 162
security, 86
vs. Spring Boot
caching providers, 21
cloud-specific features, 17
configurations, 18, 19
installation, 16
management, 21
messaging systems, 19
monitoring, 21
security mechanisms, 20
serverless architecture, 17
Microservices, 15, 16
Mobile apps, 6, 66, 145

N

NoSQL, 113-116, 162

(0

OAuth 2, 145, 146, 162

OpenAPI (Swagger), 57, 69
annotations, 74
Application class, 74
application.yml file, 75
Flight class, 69
FlightController class, 71-72
FlightService class, 70-71
Passenger class, 69-70
PassengerController

class, 73, 74

PassengerService class, 71

167

INDEX

P, Q

Passenger class, 69-70
PassengerController
class, 73-74
PassengerService class, 71
POSTMAN, 25, 43
Programmers, 34, 37
Prototyping, 50, 53
Public APIs, 1, 142

R

RAML, 55-58, 106, 107
Representational State
Transfer (REST), 2
baiscs, 11
base URL, 58, 59
content negotiation, 13, 14
data elements, 12
definition, 10
fundamentals, 12
improvement areas, 2, 3
representations, 13
resources, 13
vs. SOAP, 4-6
web services, 14
Resource owner, 146
Resource server, 146
REST, see Representational State
Transfer (REST)
REST API, 116

168

S

SecurityContext.isUserInRole
method, 86
Setter injection, 94
Simple Object Access
Protocol (SOAP), 4
SOAP, see Simple Object Access
Protocol (SOAP)
Software developers, 60
Spring Boot, 15
caching providers, 21
limitations, 15, 16
messaging systems, 19
property locations, 18
security mechanisms, 20
Spring Tool Suite (STS), 16
SQL
databases, 116
development process,
113,114
vs. NoSQL, 114
Stakeholders, 87
STS, see Spring Tool Suite (STS)

T

Technologies, 2, 3, 7, 9, 48,
113, 141

Test-first concepts, 60

Tokens, 145-150, 158

TypeScript, 143

U

Uniform resource interface, 7
User experience (UX), 47, 49, 67
UX, see User experience (UX)

Vv

Visual Studio Code, 16, 25

w

Web, 5,7, 8, 14
Web applications, 67, 68, 91, 113
Web architectural style
approaches, 6
caching, 8

INDEX

client-server, 7

code-on-demand, 9

constraint and system
property, 9, 10

HATEOAS, 9

layered system, 8

stateless, 8

uniform resource
interface, 7

Web servers, 8, 9, 149, 152

XY, Z

XML, see Extensible Markup
Language (XML)

XMLHttpRequests, 143, 149

169

